

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Personal Status Logger (stl) documentation

Personal Status Logger (stl)

Contents

	Getting Started with Status Logger

	Status Logger Use and Operation

	Internal Details and Implementation

	Contribute to the Status Logger Project

Legacy Implementation

The following documentation reflects the prior implementation of
stl, and remains for historical and archival reasons.

	Legacy zsh Implementation

Resources

	Stats Logger Reference

	stl git repository [http://git.cyborginstitute.net/?p=stl.git]

	stl on Github [https://github.com/tychoish/stl/]

	stl issue tracker [http://issues.cyborginstitute.net/]

The latest version of this manual is also available for download in
ePub and PDF formats:

	stl Manual, ePub [http://cyborginstitute.org/projects/stl/stl.epub]

	stl Manual, PDF [http://cyborginstitute.org/projects/stl/stl.pdf]

Overview

stl (i.e. “status logger”) is a tool for managing, maintaining,
and logging work for writers. With stl you can track the aggregate
word count of multi-file writing projects. Furthermore, stl
include tools to build a more complete and more automated log of
personal work and activity.

The initial implementation (circa Fall/Winter 2011) of stl was an
over-complex shell script that was neither easy to maintain or
particularly robust, that code, is still available in the git
repository. The second implementation, in Python, is more modular, and
significantly more flexible.

stl may be exactly the tool you need to:

	Record, manage, and view the output of your build tools (i.e. build
reports.)

	Track word counts automatically to provide an overview of your
progress both as you work and as you’re attempting to track daily
and hourly progress.

	Wrap your build tools to provide a more consistent interface.

This site documents both the use and the internal operation of
stl, including the initial implementation for posterity and the
current implementation.

Future Development

	Better validation of inputs.

	More clear interface for configuring outputs.

	Distribution in the Python Package Index.

	A daemon mode.

	More granular caching, potentially caching word counts on a per-file
basis rather than forcing repeated wc. Potentially using
make or ninja.

	Further decouple and create a more modular notification
system. Currently you can use stl to send notifications to the
command-line, to log files, and/or to Emacs [http://www.gnu.org/software/emacs/], via sauron-mode [http://www.emacswiki.org/emacs/Sauron].

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

Getting Started with Status Logger

Overview

You have a couple of options for implementing status logger:

	Use the simple method which creates a directory with the Python
scripts and symbolic links. Place the content of this directory in
your PATH and being using stl directly.

Use this if you want the most hands on experience with stl.

	Build and install using Python setuptools.

If you do work in Python and are comfortable with Python tools,
this option may make the most sense for you.

In the future stl may be available as a package in the Python Package
repository.

For full documentation of all stl components see:

	Internal Details and Implementation for documentation of the classes, methods, and
implementation of each Python module, including .

	Status Logger Use and Operation for documentation of the command line interface of each
module, including descriptions of use

Procedure

Regardless of the method you use, at this time you will need to
download the repository, using the following command at a system
prompt:

git clone http://git.cyborginstitute.net/repo/stl.git

Then from within the stl/ directory follow either of the following
processes.

Note

You may want to modify your files, particularly wc_track
before installing stl.

Direct Installation

Issue the following command at the system prompt to “stage” the
installation:

make simple

All required stl programs (and symbolic links,) are now in
stl/build/bin/. Either copy the content of this directory into
a directory in your search path, (g.e. ~/scripts/) or add this
directory to your search path, by adding the following lines to your
shell rc or profile file (e.g. ~/.bashrc,
~/.zshrc, or ~/.profile.)

PATH=$PATH:~/scripts
export PATH

You may have to reinitialize or source your rc/profile file
for the change to take place. You’ll be able to use any of the stl
programs from your system shell.

Install with setup.py

Issue the following command to build and install the stl python
package:

sudo make install

This make target simply calls python setup.py install. Because
this operation installs files in /usr/bin or a similar path,
this requires root access (i.e. sudo.)

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

Status Logger Use and Operation

Manual Pages

	lnote Manual

	wc-track Manual

	sauron Manual

	stl Manual

See Internal Details and Implementation for more information about the implementation
of each component.

Getting Started

While stl may have more traditional Python packaging in the
future, given the current state of development and organization, to
begin using STL you should simply add the four constituent files to
the same folder in you shell’s search path, by adding one of the
following lines to your ~/.bashrc, ~/.bash_profile, or
~/.zshrc (or similar) file:

PATH=$PATH:~/bin
PATH=$PATH:~/scripts
PATH=$PATH:/opt/bin

Then, copy the files in the stl/ directory in the stl
repository to this directory. You can issue the following sequence of
commands at your system prompt to download the files hosted on github:

curl http://raw.github.com/cyborginstitute/stl/master/stl.py > stl.py
curl http://raw.github.com/cyborginstitute/stl/master/lnote.py > lnote.py
curl http://raw.github.com/cyborginstitute/stl/master/wc_track.py > wc_track.py
curl http://raw.github.com/cyborginstitute/stl/master/sauron.py > sauron.py

Then create symlinks in this directory for easy use without the
.py extension, with the following commands. Replace ~/scripts with
the path to your personal script directory:

cd ~/scripts
ln -s stl stl.py
ln -s lnote lnote.py
ln -s wc-track wc_track.py
ln -s sauron sauron.py

Continue reading the manual pages pages the
internals section for more information about the
use and implementation of stl.

See

General Operation

stl consists of three connected Python modules/scripts that you
may use either independently or in conjunction. From the highest
level, these programs are:

	sauron: A script that provides a wrapper around
emacsclient, and ethe emacs notification system
Sauron. Supports multiple emacs clients running on a single
system/user account, and does not require a dbus
configuration. This provides a programatic interface for
sauron-mode.

	stl: A script that provides a simple interface to
calculate and log word counts for multi-file projects. This script
does not store any information regarding projects or configuration.

	wc-track: For running regularly as a cronjob,
wc_track stores the projects dict that contains
per-project configuration, and several functions for automatically
running stl for each project.

	lnote: A simple interactive script for creating
arbitrary notes in the log to provide additional context.

projects Configuration

The projects dict in the wc_track file, provides a way to
pre-configure wc_track as a wrapper around
stl. Consider the following basic setup:

username = tychoish

projects = {
 'stl' : {
 'path' : '/home/' + username + '/projects/stl/docs/source/',
 'target' : 'projects',
 'emacs' : True,
 'quiet' : True,
 'log' : '/home/' + username + '/projects/stats-' + socket.gethostname() + '.log',
 'ext': 'txt'
 },
 }

See wc-track Manual and wc_track Internals for more
information.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Status Logger Use and Operation

lnote Manual

Synopsis

lnote provides a simple way to add an arbitrary note to the log
and notification system. While most of the information included in the
stl output log is automatically generated, lnote allows you to
provide context, to make manual log analysis easier.

Dependencies

lnote depends on the following components:

	argparse, part of the Python standard library as of 2.7, and
installable separately for some earlier versions.

	socket, part of the Python standard library, used to include the
hostname in the log output.

	datetime, part of the Python standard library, used to build
timestamps for log output.

	sauron, to provide an interface to
Sauron [http://www.emacswiki.org/emacs/Sauron] by way of
emacsclient.

	wc_track, to provide local
configuration information.

Options

	
--help, h

	Returns a brief help message regarding available options and output.

	
--target <daemon>, -t <daemon>

	For users that run multiple named emacs daemon instances, this
option allows you to send the Sauron notification to a
specific named instances. Chosen from a list of daemons named in
the sauron script.

	
--message <message>, -m <message>

	A string containing the arbitrary message to add to the
notification.

Use

A typical invocation of lnote resembles the following:

lnote -t hud -m 'message here'

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Status Logger Use and Operation

wc-track Manual

Synopsis

wc-track is a simplified wrapper around stl with
stored configuration.

Options

	
--help, -h

	Returns a brief help message regarding available options and output.

	
--force, -f

	By default stl caches a copy of the word count for each project
in the /tmp/stl/ directory. If you pass --force,
wc-track will log and notify on all word-count events even if the
value has not changed since the last time wc-track ran.

	
--project <project-name>, -p <p>

	The name of the project. You must specify one of the projects
defined in the projects Configuration by the <project>
value.

If you do not specify --project, wc-track will report
all projects defined in the projects structure.

projects Configuration

projects is a python dict, that holds a number of dicts for
each project that you want to report on with stl. Consider the following prototypical project configuration:

'<project>' : {
 'path' : <path>
 'target' : <string>
 'emacs' : <bool>
 'quiet' : <bool>
 'log' : <path>
 'ext' : <string>
}

Consider the following documentation of each of these fields:

	
projects

	Holds the name of the project. Used as stl --project.

	
projects.'path'

	Holds the path to the top level of the project. Used as
stl --directory.

	
projects.'target'

	Holds the name of the emacs instance to send the Sauron
notification. Used as sauron --target.

	
projects.'emacs'

	A Boolean value. If False, this will disable output to emacs
and Sauron.

	
projects.'quiet'

	A Boolean value. If true, will suppress all command line
output. Used as stl --quiet.

	
projects.'log'

	Holds the path of the log file to record output data. Used as
stl --log.

	
projects.'ext'

	Holds the extension of all project files, that stl
will measure. All files with different extensions ignored. Used as
stl --extension.

Use

At the system shell, invoke wc-track as in one of the following
examples.

wc-track
wc-track --project rhizome
wc-track -f --project rhizome

Often it makes sense to run this program automatically using cron
or some other scheduling tool. Consider the following crontab
lines:

*/2 9-18 * * 1-5 wc-track > /dev/null 2>&1
*/2 * * * * wc-track > /dev/null 2>&1

The first operation schedules wc-track to run every two minutes,
between 9 am and 6 pm, Monday through Friday. The second operation
runs wc-track every two minutes at all times.

Typically there is no need to use wc_track from other Python
scripts, and no interface for that; however, you may want to access
the projects structure in another script as
needed:

from wc_track import projects as wc_track_projects

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Status Logger Use and Operation

sauron Manual

Note

The sauron program is simply a symbolic link to
sauron.py, for more “native feeling” command line use.

Synopsis

sauron is a Python module that provides an interface to Sauron [http://www.emacswiki.org/emacs/Sauron] via the command line and
emacsclient. Sauron is a notification system for emacs. sauron
also provide a command line interface for sending messages to Sauron
for use in other shell scripts.

Options

	
--help, -h

	Returns a brief help message regarding available options and output.

	
--priority <int>, -p <int>

	Defines the priority of messages. Typically Sauron ignores
all notification events with priority values lower than 3,
though users may configure other defaults.

	
--target <daemon>, -t <daemon>

	For users that run multiple named emacs daemon instances, this
option allows you to send the Sauron notification to a
specific named instances. Chosen from a list of daemons defined in
sauron.py.

	
--source <source>, -s <source>

	A short arbitrary string for use Sauron’s Orig
field.

	
--message <message>, -m <message>

	A string containing the arbitrary message to add to the
notification.

Use

A typical invocation from a system shell resembles the following:

sauron -t hud -p 3 'This is the text of the message.'

To send a Sauron notification from a Python module using sauron,
ensure that sauron.py is in your Python path, and then use code
that resembles the following:

import sauron

message = sauron.NotificationMessage(source='system',
 message='This is the text of the message.',
 target='hud')

message.send()

See the documentation of the sauron.NotificationMessage
class for more information about this interface.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Status Logger Use and Operation

stl Manual

Synopsis

stl is a command line word count tool for projects. wc-track provides a more consistent interface for this word count
functionality, and wraps the operation of stl. Use the stl
module as a starting point for adding additional data collection
modules to the stl system.

Options

	
--help, -h

	Returns a brief help message regarding available options and output.

	
--target <daemon>, -t <daemon>

	For users that run multiple named emacs daemon instances, this
option allows you to send the Sauron notification to a
specific named instances. Chosen from a list of daemons defined in
sauron.

If you do not modify the value of the emacs_daemon,
stl will assume that your system only has one emacs
instance running.

	
--project <name>, -p <name>

	A simple, human digestible name for the project, used in
notifiaction and logging output.

	
--directory <directory>, -d <directory>

	The top-level path of the project. Used for word counting
purposes.

	
--extension <extension>, -e <extension>

	The extension of the project files. stl ignores all files with
a different extension in the --directory. The default
value is txt unless otherwise specified.

	
--quiet, -q

	Suppress output on the command line. Disabled by default.

	
--force, -f

	By default stl caches a copy of the word count for each project
in the /tmp/stl/ directory. If you pass --force,
stl will log and notify on all word-count events even if the
value has not changed since the last time stl ran.

	
--logfile <path>, -l <path>

	A path to the logfile. By default there is no logfile.

Use

On the command line, an invocation of stl might resemble the
following:

stl --project rhizome --directory ~/wikish/rhizome/ --extension mdwn --logfile ~/stl.log

Consider the following section from wc-track, that
wraps stl:

import stl

stl.generate_events(project='rhizome',
 directory='~/wikish/rhizome/',
 target='hud',
 quiet=False,
 log='~/stl.log'
 force=True,
 extension='mdwn')

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

Internal Details and Implementation

Overview

After experiencing trouble with the integrated approach of the
zsh implementation, the current implementation takes a
more modular approach.

The two core components, stl and sauron, provide core functionality collecting data and
creating notifications respectively. The additional components,
lnote and wc_track wrap stl and
sauron to provide more useful automatic
operation. In the case of lnote, to provide
a way of creating arbitrary log messages to annotate a status log: and
in the case of wc_track, to provide a way
of automatically collecting word count data from a number of
pre-configured projects.

The documentation listed below provides an overview of the internal
implementation of each Python module, including code samples, with
particular attention toward enhancement and future extension. For
usage information consider the Status Logger Use and Operation documentation.

Programs

	sauron Internals
	Overview

	Dependencies

	Implementation
	Data

	Methods

	Interfaces and Classes

	Extension and Development

	stl Internals
	Overview

	Dependencies
	Internal Modules

	Standard Library Modules

	Implementation

	Extension and Improvement

	lnote Internals
	Overview

	Dependencies
	Internal Modules

	Standard Library Components

	Methods

	Extension

	wc_track Internals
	Overview

	Dependencies
	Internal

	Standard Library

	Implementation
	Variables and Data

	Extension

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Internal Details and Implementation

sauron Internals

Overview

saroun provides a thin wrapper around Saruon [http://www.emacswiki.org/emacs/Sauron] so that programs running
outside of emacs can send notifications via the shell, either remotely
or locally, without needing to use dbus or other
methods. sauron requires that your system runs Emacs as a
daemon, and contains support for multiple emacs daemons running on the
same system or under the same user account.

Although you can run the command directly, as described in
sauron, you will typically use sauron by
way of the NotificationMessage() class, or in another
shell script.

Dependencies

	argparse [http://docs.python.org/library/argparse.html#argparse]

	os [http://docs.python.org/library/os.html#os]

	subprocess [http://docs.python.org/library/subprocess.html#subprocess]

	socket [http://docs.python.org/library/socket.html#socket]

	datetime [http://docs.python.org/library/datetime.html#datetime]

Implementation

The implementation of the sauron has the following components:

Data

	
sauron.work_emacs_daemons

	A list of “work” emacs daemons.

	
sauron.personal_emacs_daemons

	A list of “personal” emacs daemons.

	
sauron.emacs_daemons

	A new list consisting of all the elements of
work_emacs_daemons and
personal_emacs_daemons.

The first instance in this list is always the “default” emacs
used in other scripts.

The distinction between “work” and personal allows you to maintain
different log files. Coordinate these variables with the paths to
the log files in wc_track.

Methods

	
sauron.parse_message(message)

	Processes messages, to normalize formats for messages submitted as
strings or via the command line for use by Sauron.

Interfaces and Classes

	
class sauron.NotificationMessage(source=<hostname>, target=<emacs_daemon>, priority=<3>, message=<None>)

	NotificationMessage() is the primary interface for
sauron and the other modules in the stl
suite as well as by the main() method. When creating
NotificationMessage() objects, you only need to pass the
message argument. Read the documentation of the following
default instance objects in the NotificationMessage()
class for information about the parameters:

	
target

	Defaults to the first item in emacs_daemons array. Used
to determine to which emacs instance send() will deliver
the notification.

	
priority

	Defaults to 3, which is the lowest priority of Sauron
messages that are conveyed to emacs users by default. Sauron
hides lower priorities unless users configure a different
threshold.

	
source

	A string, passed to sauron for the Orig field of the Sauron
display. Use this to describe or specify the process or script
that sends the notification. Defaults to the system hostname.

	
message

	The test of the massage. You must specify a value for this
variable.

	
NotificationMessage.send()

	Call the send() to send a message to Sauron as configured,
as in the following invocation:

n = NotificationMessage(message="this is a test message.")
n.send()

	
NotificationMessage.log()

	log() is equivalent to send() except that it write
message to a log file. This method will attempt to import
the wc_track.work_log and wc_track.personal_log
values from the wc_track module, and will output the log
message to standard out if there are no log files specified.

Consider the following invocation:

n = NotificationMessage(message="this is a test message.")
n.log()

	
sauron.cli()

	Collects input from the command line using argparse [http://docs.python.org/library/argparse.html#argparse]. See sauron Manual for more information
about the command line interface.

The return value of cli() is the output of
argparse.ArgumentParser.parse_args() [http://docs.python.org/library/argparse.html#argparse.ArgumentParser.parse_args].

	
sauron.main()

	The entrance point for sauron when called from the command
line. Collects output from cli(), creates a
NotificationMessage object, and then calls send() on the object.

Extension and Development

In many ways, the entire stl suite is a wrapper and
extension of the sauron module. Future development of
sauron will focus on more flexible logging, options to provide
more structured logs, and increased capacity with other emacs
configurations. The command line interface might benefit from some
additional work or other changes.

NotificationMessage encapsulates all functionality, and makes
it easy to wrap and send notifications from other scripts.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Internal Details and Implementation

stl Internals

Overview

stl performs the core operations of the stl suite:

	collects word count data from project files.

	caches and maintains word count data (in /tmp) to prevent
overreacting of unchanged data.

	integrates with sauron to provide logging and notification.

Dependencies

stl depends on the following system tools:

	wc

	grep

	sed

	find

Additionally, it uses the following python modules:

Internal Modules

sauron

Standard Library Modules

	os.path [http://docs.python.org/library/os.path.html#os.path]

	subprocess [http://docs.python.org/library/subprocess.html#subprocess]

	argparse [http://docs.python.org/library/argparse.html#argparse]

Implementation

	
stl.shell_word_count(directory, extension='txt')

	

	Parameters:	
	directory (string [http://docs.python.org/library/string.html#string]) – The path of the top level directory that
contains the project’s documents. Pass in
as a string.

	extension (string [http://docs.python.org/library/string.html#string]) – The file extension, without the preceding
period (i.e. .) of all project
files. All project files must have an
extension. stl only counts the
words in files that have this extension.

	Returns:	The word count for the project files in the specified
directory.

	
stl.wc_message_builder(project, directory, force=None, extension=None)

	

	Parameters:	
	project (string [http://docs.python.org/library/string.html#string]) – The name of the project. stl uses
this string to report and track the word
count for a specific project, to avoid
over-reporting, and to annotate logs.

	directory (string [http://docs.python.org/library/string.html#string]) – The path of the top level directory that
contains the project’s documents. Pass in
as a string.

	force (bool [http://docs.python.org/library/functions.html#bool]) – When true, always return the word count, even
if the word count value is the same as the
cached value.

	extension – The file extension, without the preceding period
(i.e. .) of all project files. All project
files must have an extension. stl only
counts the words in files that have this
extension.

wc_message_builder() is the main point of integration
between the parts of the script that collect and process the word
count data (i.e. wc_message() and
shell_word_count()) and sauron() that handles and
produces the notification and logging.

Not intended for direct use.

	
stl.wc_message(word_count, project)

	

	Parameters:	
	word_count (string [http://docs.python.org/library/string.html#string]) – The word count value as a string.

	project (string [http://docs.python.org/library/string.html#string]) – The name of the project.

	Returns:	A string with a formed word count message used by
wc_message_builder().

	
stl.generate_events(project, directory, target, quiet=False, log=False, emacs=True, force=False, extension=None)

	

	Parameters:	
	project (string [http://docs.python.org/library/string.html#string]) – The name of the project. Used to store the
cached word count values.

	directory (string [http://docs.python.org/library/string.html#string]) – The path of the directory that holds the
project files.

	target (string [http://docs.python.org/library/string.html#string]) – The name of the emacs daemon to send the
notification to. If None, does not send
notifications.

	quiet (bool [http://docs.python.org/library/functions.html#bool]) – If True, suppresses output (on standard
output.) Defaults to False.

	log (bool [http://docs.python.org/library/functions.html#bool]) – If True write output to the log. Uses the
sauron.NotificationMessage.log()
method. Defaults to False.

	emacs (bool [http://docs.python.org/library/functions.html#bool]) – If True send the Sauron
notification. Defaults to True.

	force (bool [http://docs.python.org/library/functions.html#bool]) – If True passes force=True to
wc_message_builder(), which impels
reporting, even when the current value is
the same as the cached value

	extension (string [http://docs.python.org/library/string.html#string]) – The extension of the project files, to
limit reporting to only relevant project
files. If None, the default,
generate_events() does not pass
the extension parameter to
shell_word_count().

	
stl.cli()

	Defines and describes the command line interface provided by
argparse [http://docs.python.org/library/argparse.html#argparse]. See stl Manual for full documentation
of this interface.

	
stl.main()

	Logically the flow of data through the methods in stl is:

	data from cli() passes in from the user into the
generate_events().

	generate_events() calls wc_message_builder(), and
if wc_message_builder() returns data, then
generate_events() creates and distributes notifications.

	wc_message_builder() calls shell_word_count() to
return the word count, and then uses wc_message() to
format and return the word count message to
generate_events() where all of the main action is.

Extension and Improvement

	Data generated by stl could be pre-aggregated in some way
(running totals, daily progress, etc.), or collected in some system
more easily analyzed.

	For projects stored in git, some information about commit, update
(i.e. pull) events or branch context, might provide some basic
insight when reviewing stl logs. While each system logs to its
own log file, some sort of centralization or synchronizing of log
data may be useful.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Internal Details and Implementation

lnote Internals

Overview

lnote is a basic example of a sauron and stl, wrapper. It
allows users to insert messages into the message

Practically being able to insert arbitrary messages into the log is
great for personal logging because it allows you to provide a little
bit of context. At only 45 lines, the module also demonstrates the
small account of code required to extend and collect data for the
personal log.

Dependencies

lnote depends on the following Python modules:

Internal Modules

	sauron

	wc_track

Standard Library Components

	argparse [http://docs.python.org/library/argparse.html#argparse]

	datetime [http://docs.python.org/library/datetime.html#datetime]

Methods

	
lnote.cli()

	Defines the basic basic command-line interaction. If the
sauron.emacs_daemons list is empty then it suppresses
Sauron notification.

Takes no arguments and returns the argparse parsed arguments.

	
lnote.send_message(note, target)

	

	Parameters:	
	note (string [http://docs.python.org/library/string.html#string]) – The message text. Passed in lnote.main() from the
command line output returned by lnote.cli().

	target (string [http://docs.python.org/library/string.html#string]) – The name of the emacs daemon to send the Sauron notification
to. Must be in the sauron.emacs_daemons structure.

Creates and object of the sauron.NotificationMessage class
and sends the message. Also writes the message to a log. If you
need to modify the loggoing output, edit this part of the module.

	
lnote.main()

	The primary entry point into lnote. Simply calls the
cli() method and pass its data into
send_message().

Extension

In general lnote is a skeleton stl tool. To create new tools:

	copy lnote,

	create a new function that returns a different message, and

	optionally change the source parameter in the creation of the
sauron.NotificationMessage object, within
send_message().

	customize the logging behavior of send_message() as needed.

Everything else is standard.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Internal Details and Implementation

wc_track Internals

Overview

wc_track is a wrapper around sauron and stl that
provides an initial implementation of per-project tracking and
operation. See wc-track Manual for more information about use.

In most cases, you will not need to use wc_track from another
Python module, although some of the data in the projects
dictionary may be useful in other scripts. In the future the
configuration of projects may be distinct from wc_track, but at
the moment you will need to edit wc_track.py before installing
and using wc-track.

Dependencies

Internal

stl

Standard Library

	socket [http://docs.python.org/library/socket.html#socket]

	os [http://docs.python.org/library/os.html#os]

	argparse [http://docs.python.org/library/argparse.html#argparse]

Implementation

Variables and Data

	
username

	Stores the current username. By default, uses
os.getusername to get the username of the user
that owns its process. Override if needed, and with caution.

	
personal_log

	Stores the path of a “personal” projects log file. Defaults to:
~/.stl/personal-stats-<hostname>.log, where <hostname>
is the output of python.socket.gethostname(). Override as
needed.

	
work_log

	Stores the path of a “work” projects log file. Defaults to:
~/.stl/work-stats-<hostname>.log, where <hostname> is
the output of noindex:python:socket.gethostname(). Override as
needed.

	
projects

	A data structure (python dictionary) that stores configuration
information for projects that you will use wc_track to
collect data on regularly. for tracking.

Each project has a key in projects, which holds a
dictionary. The keys of that dictionary map to the arguments to
stl.generate_events()/stl. The
projects the following keys:

	
projects.<project>.path

	The path to the project’s top level directory. wc_track
passes this value as directory to stl.generate_events().

	
projects.<project>.target

	The name of the emacs daemon to send notifications about this
project. wc_track passes this value as target to
stl.generate_events().

	
projects.<project>.emacs

	A Boolean value. If True, send a notification to emacs via
sauron. wc_track passes this value as emacs
to stl.generate_events().

	
projects.<project>.quiet

	A Boolean value. If True, suppress all output on the
console. wc_track passes this value as quiet
to stl.generate_events().

	
projects.<project>.log

	A filesystem path to the log. Typically personal_log or
work_log.

	
projects.<project>.ext

	The extension of the project files. wc_track passes this
value as quiet to stl.generate_events().

	
set_quiet()

	

	Parameters:	
	force (bool [http://docs.python.org/library/functions.html#bool]) – Pass True to override the value of
projects.<project>.quiet.

	project_quiet – A value, likely a bool, which
set_quiet() will return if force
is False.

A helper method that takes two arguments. If the first is true, the
method will return True (and override the
projects.<project>.quiet,) otherwise set_quiet()
returns the second value.

	
main()

	The core operation of the program. Includes the following
operations:

	Read input and user from the command line.

	If users do not specify and project, iterate through all projects
in projects and report all statistics if different from
the cached values. (Unless passed forced on the command line.)

	If users do specify a project, report only thhose projects, and
only if they’ve not changed in the since (Unless passed forced
on the command line.)

See wc-track Manual for more information.

Extension

In most cases, there are few possible modifications or extensions to
wc_track, but it serves as a good example for the kinds of
modification and interfaces that you could provide to the kinds of
personal statistic monitoring and recording as part of STL and future
related tools.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

Contribute to the Status Logger Project

Source Code

stl source code is available from the following git hosting
providers:

	stl git repository [http://git.cyborginstitute.net/?p=stl.git]
(Cyborg Institute.)

	stl on Github [https://github.com/cyborginstitute/stl/]

Feel free to clone or fork at your leisure. Issue a pull request on
GitHub or send me an email/IM/IRC message if you want to send a patch,
or would like me to pull from another repository changes back into
“maineline.” I will accept patches of all sizes against both the
source and documentation.

Bugs/Issues

For the moment, I will track issues using the Cyborg Institute
Listserv [http://lists.cyborginstitute.net/listinfo/institute]. Just write an email to the list with your issue or bug, or
send me a message directly and I’ll start a new thread.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

Legacy zsh Implementation

Overview

Initially I implemented stl as a zsh script. These pages document
that program and it’s use and operation.

Pages

	zsh stl Manual Page (Legacy)
	Synopsis

	Basic Usage

	Customizing stl

	zsh stl Internals (Legacy)
	Synopsis

	Code Paths

	zsh stl Code and Organization (Legacy)
	Coding Goals

	File Organization

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Legacy zsh Implementation

zsh stl Manual Page (Legacy)

Note

This documentation reflects the legacy implementation of
stl. See Status Logger Use and Operation for the current implementation.

Synopsis

This document provides an overview of stl from the perspective of
the user concerning both the script itself [http://git.cyborginstitute.net/?p=stl.git;a=blob_plain;f=bin/stl;hb=master] as it exists in
“stock” format, and how many will choose to customize the script. See
“zsh stl Internals (Legacy)” for more information on the underlying functions,
operation, and the code paths of the script.

Basic Usage

This section describes the invocation and purpose of various stl
commands, ignoring most of the internals of the script.

Note

While you may want to set up interfaces for calling stl
directly, in most cases stl will run fairly regularly as a cron
job.

stl commands take the following basic form:

stl [domain] [worker] [project] [options]

The elements of this command are:

	
[domain]

	You may omit this layer in some cases, but is useful if you need
to maintain two separate log files, with two separate sets of
projects.

If this term does not match one of the defined commands, then the
program exits with help text.

	
[worker]

	In the default implementation this is either “make”,
“stats”, report”, or “output” and defines the major
fork in the behavior of the program. “make” will build a
project, while “stats” provides access to word count and latest
build times, “report” displays the output of the last build,
while “output” is responsible for modifying the default output
style.

The default worker option is “stats”.

	
[project]

	A keyword that defines each project. stl requires this option
for successful output. The make worker only accepts one
argument, while stats can handle multiple projects in some
cases.

	
[options]

	Some workers, accept additional arguments or messages.

The stats worker is the default and returns statistics about
your projects. The options are:

	wc, generates a word count for the project

	build, returns information about the last build generated by
the make worker.

	force, force stl to generate output even if the value of
the output has not changed since the last output.

The entry worker provides the capacity for
recording arbitrary message to the log. The options are:

	start, append a note to mark the beginning of a period of
work on a project.

	stop, appends a note to mark the end of a period of work on
a specific projec.t

	note, appends the remainder of the command line arguments to
a note that stl writes to the log.

The make worker runs a specific build routine for a
project, you will configure options by default when setting up the
project. For sphinx projects, the make worker provides the
following options:

	clean

	html

	latex

	epub

	sffms

These correspond directly to a target in the default Makefile
that sphinx-quickstart generates. You may specify multiple
options to generate multiple outputs. The ikiwiki builder uses
the remainder of the command line argument as string that becomes
the commit message for the wiki’s git repository.

The report worker provides an interface to view the build
reports generated by previous runs of the make
worker. report always displays only the last build for
whatever project you specify. You must specify one of the following
log viewers.

	less opens the build report file using the less
command.

	more opens the build report file using the more
command.

	cat outputs the build report file using cat.

	emacs-new opens the log file in a new graphical
emacsclient window.

	emacs opens the log file in an
existing emacsclient instance.

	emacs-term opens the log file in a terminal
instance emacsclient.

	term opens the build report in a new terminal window
(i.e. urxvtcd) using the less command.

Customizing stl

The example stl included here is reasonably generic, but all users
will need to customize the code at least a little. All user
customizable code resides at the bottom of the file. Continue for more
detail on these customizations.

At the very end of the file the following “main” function, which
is the user’s entry into the code, which resembles the following:

main(){
 ARG=($@)

 case $ARG[2] in
 (make) ACTION=make ;;
 (stat*) ACTION=stats ;;
 (entry*) ACTION=entry ;;
 (report) ACTION=report ;;
 (*) ACTION=stats ;;
 esac

 domain=$ARG[1]
 ARG[1]=()

 case $domain in
 (tycho) tycho-worker $ARG; exit 0 ;;
 (job) job-worker $ARG; exit 0 ;;
 (*) echo "help text"; exit 1 ;;
 esac
}
main $@

The first case statement sets a variable that the
action-handler function uses. The second case statement
selects the domain.

If you modify the first statement, add corresponding code to the
action-handler function. action-handler calls the functions
that do something (i.e. “actions.”) The second case statement simply
passes arguments to the next user customizeable function, which is the
“domain-selector.”

For the the first case statement, it’s important to set a good default
(i.e. stats) as most invocations of the program will be
“stats” operations, and the action function itself can handle
errors more clearly. For the second operation, it makes sense to
produce an error, because if one there is no domain, there is no way
to proceed.

See “tycho-selector”, which is an example “domain-selector” function:

tycho-selector(){
 PROJECT=projects
 LOG_TAG=tycho

 for argument in $ARG; do
 case "$argument" in
 (ae) queue=($queue al-edarian); shift ;;
 (mars) queue=($queue knowing-mars); shift ;;
 (admin) queue=($queue cyborg-admin); shift ;;
 (gmg|mg) queue=($queue mediagoblin);
 WC_PATH=~/projects/mediagoblin/docs/source
 shift ;;
 (rhizome) queue=($queue rhizome); shift
 PROJECT_PATH=~/assemblage/rhizome/
 WC_PATH=$PROJECT_PATH
 BUILD_TYPE=wiki; EXTENSION=mdwn
 ;;
 (assemblage|ass) queue=($queue assemblage); shift
 PROJECT_PATH=~/assemblage/
 WC_PATH=$PROJECT_PATH
 BUILD_TYPE=wiki; EXTENSION=mdwn
 ;;
 (wikish|wiki) queue=($queue wikish); shift
 PROJECT_PATH=~/wikish/
 WC_PATH=$PROJECT_PATH
 BUILD_TYPE=wiki; EXTENSION=mdwn
 ;;
 (*) # continue silently ;;
 esac
 done

 action-handler $@;
}

The “domain-selector” functions set variables that describe the
sub-projects in the domain that the “actions” use. The main reason
to have separate projects is to be able to log statistics into
separate files.

There are two constants set at the beginning of the “domain-selector.”
Consider them and their purpose:

	$PROJECT describes the domain and unless overridden the
directory in which all sub-projects reside.

	$LOG_TAG describes the string that prefixes log items when
sending the log via XMPP.

The initial version of the script assumed each “domain” would refer to
a group of projects that were sub-directories of a single “domain”
folder. This is why the “ae”, “mars”, and “admin” projects
only set the $queue variable. However, it’s not practical to force
projects into such a rigid hierarchy, and as a result, these defaults
can be overridden, which is what happens in the other sub-projects.

The key variables here are:

	$queue is an array that holds lists of sub-projects. For many
workers, as long as you don’t mix Sphinx and Ikiwiki builds, you can
specify multiple projects and, and stl will report or act on all
of them.

Note

While script uses this basic “queue” structure in a number of
places, given the way that the shell (and I) have set up the
variables, means that this functionality is not as robust as it
ought to be. In the interests of reliability over correctness,
the script should always “do the right thing” if you only
specify one project in an invocation.

	$WC_PATH is the location of the source files. By default, the
script will look for source files in “$PROJECT/source/$queue.item”
(where $queue.item is an element in the $queue array.) Set
WC_PATH to override this.

	$PROJECT_PATH is the path of the project files. Unless set this
defaults to “~/project”.

	$BUILD_TYPE specifies which “build method” to use. Current
options are wiki for Ikiwiki instances (stored using git), and
sphinx. The default is sphinx.

	$EXTENSION specifies the file extension of the files. Defaults
to rst. Used to ensure that the word counts do not include
extraneous files.

Set any or all of these variables in each case statement. You may now
begin using stl to track the stats of your task.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Legacy zsh Implementation

zsh stl Internals (Legacy)

Note

This documentation reflects the legacy implementation of
stl. See Internal Details and Implementation for the current implementation.

Synopsis

This document provides an overview of the logic of stl, and
discusses the code on a per-function basis, to provide a very fine
grained idea of how the script operates. This information should be
helpful if you wish to extend and add features to stl, or if you
are having a problem and want to know about the underlying operation
of the script.

Code Paths

Beginning in the main() function (at the end of the file,) the
first argument specifies the “domain,” and the second argument
specifies one of the program’s of “workers.” The worker sets
the global ACTION variable, and the “domain” setting calls one of
the “domain-selector” functions.

Each domain selector sets the default PROJECT and optionally
LOG_TAG variables. Then, the selector loops over the remaining
elements in the argument string to extract and set variables for each
sub-project that you want to track with stl. While there are some
global variables, the main operation of the domain-selector function
adds the sub-projects to a queue variable that holds an
array. When the selectors have set the all required variables for the
project, and then call the action-handler function.

action-handler calls the appropriate worker function based on the
value of the ACTION variable, and passes each worker the full
argument string.

Abstractly, worker functions:

	begin by calling the notify-init function. notify-init is
the first function in the file.

	Sets required variables if they are heretofore unset.

	Sets additional values from the argument string, if needed.

	Performs the required work.

	Sends output by way of the notify() function provided by the
notify-init function.

	Exits.

stl contains the following worker functions with operations
described below.

	
compile-project

	compile-project provides the procedure to build a project.

The function begins by running notify-init and setting three
variables if they are unset:

	BUILD_REPORTS_LOC which specifies the directory where the
script writes the output of the build.

	PROJECT_PATH which sets the path of the project to
“~/$PROJECT” unless overridden. Overrides of this variable
typically affect the ability of stl to run multiple stats in
one invocation.

	BUILD_PATH specifies either “sphinx” or “wiki”, with
sphinx being the default. The wiki option, works with
Ikiwiki instances running in git.

Then, there are two embeded functions (described below) for
building both types of project, followed by a for loop that
builds all projects specified in the queue.

The loop begins by declaring and then creating the file for the
BUILD_REPORT which consists of: the path from
BUILD_REPORTS_LOC, a 32-bit UNIX timestamp, the name of the
project, and a .txt extension. The loop also contains a case
statement that calls an embeded function with the required
arguments to build the project. When stl reaches the end of the
queue, the program exits.

Note

Multiple project building does not work as efficiently as you’d
expect: if you override PROJECT_PATH, for instance, the
behavior is erratic.

Ideally, the domain selectors should declare a configuration
array rather than a simple variable so that the builders and
other operations can itterate over entire configuration objects
rather than a list of sub-project names.

	
build-sphinx-project

	This function assumes that your Sphinx projects use the default
Makefile provided by sphinx-quickinstall or similar.

The main body of this function provides a for-loop around a case
statement for each build type to call make as many times as
necessary. When a build complete, the function calls the
notify function to log the completion of the new build.

The function itself expects that its enclosing function will
loop over it several time for each project, and is simple as a
result.

	
build-wiki

	build-wiki works for any Ikiwiki that use git as the storage
system; however, it’s general enough to use as the basis for any
system that controls the build in a “post-commit” or
“post-update” hook. The procedure is:

	Change directory to the PROJECT_PATH

	In git’s staging area, remove all files had existed in the
repository, but have been removed from the file system since
the last commit. Then, add all uncommitted changes to the
repository’s staging area.

	Commit all changes, using the remainder of the argument string
as the commit message.

	Pull in new changes using the “--rebase” option from the
default remotes.

	Push all changes to the default remote repositories.

When the procedure is complete, the function calls the
notify function to log the completion of the build.

	
stats-base

	stats-base begins by calling the notify-init function, and
setting four variables if they are unset:

	BUILD_REPORTS_LOC which specifies the directory where the
script writes the output of the build.

	PROJECT_PATH which sets the path of the project to
“~/$PROJECT” unless overridden. Overrides of this variable
typically affect the ability of stl to run multiple stats in
one invocation.

	DATE_OUTPUT_FORMAT Specifies a date output string used in the
log messages when reporting the last build time. Translates the
UNIX-timestamp into something readable. The default value is:

%A %B %d, %Y (%I:%m %p)

	EXTENSION which sets the file extension of the source
files. The default value is rst.

Then a for iterates over the remaining arguments in the
function, and adds values to an outputs array in a case
statement. Possible settings here, are:

	wc, word, or words, adds a word count to the output
queue.

	build or builds adds a report of the last completed build
for which a build report exists.

	force which sets the “FORCE” environment variable. In the
default operation stats-base will not output any data unless
it has changed from the last time the operation ran. force
overrides this.

There is one embeded function at this point (“reporter”
documented below that provides a simple way for the main work of
the function to pass information to the notify function when
(and only when) there is something to report.

The main work of the function occurs in a nested for loop. The
outer loop, iterates over the items in the queue array. It
begins by setting the WC_PATH variable if it isn’t already
set (the default value, which works great for Sphinx projects is
~/$PROJECT_PATH/$item/source/ where $item``is the iterated
member of the ``queue.

Note

Again there are limitations to this method, when overloading the
“WC_PATH variable with running through the queue loop
more than once. Although it’s a bit more flexible than the
compile-function behavior the implementation is still
flawed.

Ideally, the domain selectors should declare a configuration
array rather so that the builder and other operations can
itterate over entire configuration objects rather than a list of
sub-project names.

The second loop, iterates over the contents of the outputs
variable, and contains a case statement. At the present time, the
only stats are “word counts” (wc) that provide a count of the
words in the project and “build reports” (build) that provide a
note regarding the latest recorded build of the project.

By adding casses to the statement here and at the beginning of the
stats function it’s relatively easy to add different type of
statistics reporting to stl.

The cases in this inner loop, sets two variables:

	query is effectively a “lambda” function, stored in a
variable, enclosed in backtics (i.e. “`”), that calculates
the total word count or the date of the relevant build.

	message which constructs the message that is ultimately
passed to notify and sent to the log.

Finally, each inner-loop case calls the reporter function with
four arguments. Continue to read the documentation of the reporter
function and its use.

	
report

	The reporter function ensures that stl logs only if the
value of the statistic has changed since the last time the
function ran, or the last time the function ran with a new
value. Because it caches changed values in /tmp the stl
will always report all statistics once following system reboot.

The function begins by setting more readable variable names for
the four arguments:

	type holds to the kind of build (outputs from the
stats-base function.) type identifies the statistic in
the cache.

	project holds to the sub project, and also identifies the
statistic in the cache. Do not confuse project with the
global PROJECT variable, which is also used here.

	data holds the value of the statistic that stats-base
reports.

	message holds the message that will passed to
notify. In most cases, this actually overwrites the
message variable which already exists with the same
content but the reassignment adds clarity.

The function begins by making the directory
/tmp/$PROJECT-stats/ if it doesn’t already exists. stl
stores its cache here, which allows independent caches for each
domain. The cache is a directory of files named
“$project-$type.

The main work of this function is in a 3-part if
statement.

	When FORCE equals 1, the first part, passes the
message variable to the notify function .

	When the cache for this static (type) doesn’t exist for
this project, the second part writes the value of data to
the appropriate location in the cache.

	When the value of data is different from the value in the
cache, the final part:
	Removes the existing value from the cache,

	creates a new cached value, and

	passes the message to the notify function which logs
the changed statistic.

There is no else statement, which would cover the case where
the value in the cache is equal to the most recent value
measured. This is likely the most common case. In this case
stl outputs nothing, and continues running.

Note

While it may be possible to make the entire process more
efficient by checking the cached value, earlier in the code
path, the savings are minimal because stl would still
have to run all of the same expensive operations (checking
the new word count, etc.) the same number of times to ensure
that the value hasn’t changed.

	
stats-log

	This simple function allows users to add arbitrary messages to
their log files (by way of notify). The function begins by
calling notify-init, setting the “type” variable, and
cleaning up the array held by the ARG variable.

Next, an if statement detects an error condition if
stats-log is running while notify is not in “log-file”
mode.

Finally, a case statement passes formatted messages to
notify depending on the value of type. Current types
include: start for “clocking in,” stop for “clocking out,”
and note for inserting arbitrary messages into the log.

This function returns an error if called with an unknown type
value.

	
build-report

	The build report function opens the most recent saved record of a
build (as created by all invocations of the compile-project
function, and displays them in the specified format.

The function begins by calling notify-init and setting the
standard “BUILD_REPORTS_LOC variable if it not already set, and
also setting the interface variable, which controls how the
value is output.

The main operation of this function occurs within a for loop
that iterates over members of the queue. The loop begins by
declaring the LAST_LOG variable, which identifies the relevant
build report for the current member of the queue. Then a case
statement, selects the interface and passes LAST_LOG to this
interface. If an interface case does not exist, the case statement
produces an error and exits.

There are no known limitations to the ability of this function to
handle multiple projects in one invocation, beyond the limitations
created by interfaces themselves, provided that you only use one
interface.

Additionally the notify-init function, which appears throughout
stl, has the following operation:

	
notify-init

	Many functions within stl call notify-init. The main
purpose of this function is to determine when to log messages to
the log file, and when to log messages by way of the xmpp bot. It
accomplishes this by creating the notify according to the
configuration and the current environment in which stl runs.

The function begins with a case statement. If the first
argument to notify-init (accessed by way of the output
action handler,) is “xmpp”, then this statement removes the
“/tmp/$PROJECT-stats/log” file. If the first argument to
notify-init is “logfile” then this statement creates this
file. If neither “xmpp” nor “logfile” is the first argument
then the function continues.

Next, notify-init sets “LOG_TAG” to the value of
PROJECT if LOG_TAG is empty. Then, it creates the
“log-file-notify” function, which defines the log-file
behavior, documented below.

Then a 3-part if statement defines the notify
function. This sub function is then used throughout stl. The
conditions are:

	When the Wireless (i.e. wlan0) interface does not exist,
and the eth0 interface does not have an IP address, define
notify as a function calls log-file-notify passing
log-file-notify all arguments.

	If the log file in the cache
(i.e. “/tmp/$PROJECT-stats/log”) exists, then notify is a
function that calls log-file-notify passing
log-file-notify all of the arguments that notify was
called with.

	In all other cases, the notify function sends notifications
as an instant message to the XMPP interface. It uses the
“xmpp-notify” script included in the distribution with
stl.

xmpp-notify is a simple Perl script that sends it’s argument
string to a default XMPP address, using account credentials
declared in that file.

Finally the function ends, with a conditional that sends a
notification if the notification type has changed or been updated
as a result of the initial case statement.

	
log-file-notify

	The log-file-notify script performs the following operations:

	touches the ~/$PROJECT/stats.log files and

	outputs an “[HH:MM]” time stamp followed by the
message to the log file.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Personal Status Logger (stl) documentation

 	Legacy zsh Implementation

zsh stl Code and Organization (Legacy)

Note

This documentation reflects the legacy implementation of
stl. See Internal Details and Implementation for the current implementation.

Note

This document explains my rationale for writing the zsh version of
stl in the way that I did. While this document may be useful
for you as a legend for understanding this script, the truth is
that the zsh stl is only useful as a prototype, and needs to be
rewritten in a more modular and maintainable system. – tychoish [http://tychoish.com/]

Coding Goals

The goals in writing this script were:

	To have something that separated the “worker” functions, from the
configuration or settings. In the past I’d used a lot of environment
variables set early in a script that I could use to customize the
script. While this approach is functional, it’s not very flexible,
and it means that in order to use the script, you have to mangle a
lot of variables just right. Putting all of this configuration
into command-line options is similarly insufficent for making usable
or generalizable tools.

	To use case statements, and for loops, when possible to
solve all of the repetitious code problems I was having in a previous
version, without resorting to long, complex, and finicky
conditionals.

	To set good defaults and use them when possible. This both makes the
script easier to set up, and also makes it easier to add new
projects. The assumption is that you have a “~/projects”
directory beneath which are a collection of projects
published/managed by Sphinx, with rst (or .txt) extension. the
script can do other things, but that takes a (bit) more work.

	To run quickly. While there’s a lot of crude elements and
inefficiencies (particularly around blunt use of loops and not
exiting if the options are verifiable invalid,) it rarely takes very
long to run, and is able to finish quickly. There are minimal
external dependencies, and most of the script stays in ZSH. There’s
some use of the date command, and a call to wc
to return word counts, and two “ifconfig | grep” calls to see if
networking is up to configure the notification.

File Organization

stl begins with a number of reusable generic functions, and ends
with a number of deployment specific functions that you’ll need to
customize so that the script knows where to find your files and
work. See the previous section for more
information on how to customize the script for personal usage, and the
code paths section for more information on
how the interpreter processes the code.

This section provides an inventory, as they appear in the file, of
each function and it’s general purpose.

	notify-init configures the notification system, and creates a
notify function that either logs the output of script to a
logfile (i.e. “~/$PROJECT/stats.log”) or sends an xmpp message
using an xmpp-notify script that is also included in the
distribution.

The script will use the log file if:

	There is no network connection.

	The file “/tmp/$PROJECT-stats/log” exists.

Otherwise the script will send log messages to XMPP. Use a command
in the following form to toggle XMPP/log file logging.

stl [domain] output xmpp
stl [domain] output logfile

Remember that you must configure your domain before running this
command.

	action-handler is a simple function that holds a case statement
that calls another functions that does the actual work of the
script.

	stats-log allows users to create a number of entries in the log
with arbitrary messages, to provide the build reports and word
counts with context. stats-logs requires that you specify a
start, stop, or note, followed by a message.

Output follows the system configuration for “logfile” or “xmpp”
notifications.

	build-report opens or outputs the contents of the last build of
the specified project or projects. Use these options to check for
build errors.

	stats-base is the main worker function of stl, and it checks
and returns word counts for projects primarily. Unless you include
the “force” argument, this function will only return data if
the value is different from the value when the script was last
run. Every time the script runs, it checks against the last new
value written in the “/tmp/$PROJECTS-stats/ folder.

	compile-project triggers a rebuild or build of the project. It
supports Sphinx (including sffms [http://pypi.python.org/pypi/sffms/],) and Ikiwiki using git. The
function writes the output of the build process to files in the
“/tmp/$PROJECT-stats” folder, and logs completion via the
notify function.

	domain-selector is a function that sets sub-project specific
variables before calling the “action-handler” function.

	main the primary function of the code, and the only function
that the main body of the script calls directly.

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Personal Status Logger (stl) documentation

Stats Logger Reference

Glossary

	sauron

	A notification system for emacs. See the Sauron EmacWiki Page [http://www.emacswiki.org/emacs/Sauron]
for more information. The sauron script,
included as a part of stl, provides a python and command line wrapper for
sending Sauron notifications by way of emacsclient.

Additional Reference

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	Personal Status Logger (stl) documentation

 Python Module Index

 l |
 s

 			

 		
 l	

 	
 	
 lnote	

 			

 		
 s	

 	
 	
 sauron	

 	
 	
 stl	

 Copyright 2011, Sam Kleinman.

 Navigation

 	
 index

 	
 modules |

 	Personal Status Logger (stl) documentation

Index

 Symbols
 | C
 | E
 | G
 | L
 | M
 | N
 | P
 | S
 | U
 | W

Symbols

 	

 	
 --directory <directory>, -d <directory>

 	

 	stl command line option

 	
 --extension <extension>, -e <extension>

 	

 	stl command line option

 	
 --force, -f

 	

 	command line option

 	stl command line option

 	
 --help, -h

 	

 	command line option

 	sauron command line option

 	stl command line option

 	
 --help, h

 	

 	lnote command line option

 	
 --logfile <path>, -l <path>

 	

 	stl command line option

 	
 --message <message>, -m <message>

 	

 	lnote command line option

 	sauron command line option

 	

 	
 --priority <int>, -p <int>

 	

 	sauron command line option

 	
 --project <name>, -p <name>

 	

 	stl command line option

 	
 --project <project-name>, -p <p>

 	

 	command line option

 	
 --quiet, -q

 	

 	stl command line option

 	
 --source <source>, -s <source>

 	

 	sauron command line option

 	
 --target <daemon>, -t <daemon>

 	

 	lnote command line option

 	sauron command line option

 	stl command line option

C

 	

 	cli() (in module lnote)

 	

 	(in module sauron)

 	(in module stl)

 	

 	
 command line option

 	

 	--force, -f

 	--help, -h

 	--project <project-name>, -p <p>

E

 	

 	emacs_daemons (in module sauron)

G

 	

 	generate_events() (in module stl)

L

 	

 	lnote (module)

 	
 lnote command line option

 	

 	--help, h

 	--message <message>, -m <message>

 	--target <daemon>, -t <daemon>

 	

 	log() (sauron.NotificationMessage method)

M

 	

 	main()

 	

 	(in module lnote)

 	(in module sauron)

 	(in module stl)

N

 	

 	NotificationMessage (class in sauron)

 	NotificationMessage.message (in module sauron)

 	NotificationMessage.priority (in module sauron)

 	

 	NotificationMessage.source (in module sauron)

 	NotificationMessage.target (in module sauron)

P

 	

 	parse_message() (in module sauron)

 	personal_emacs_daemons (in module sauron)

 	

 	personal_log (built-in variable)

 	projects (built-in variable)

S

 	

 	sauron

 	

 	(module)

 	
 sauron command line option

 	

 	--help, -h

 	--message <message>, -m <message>

 	--priority <int>, -p <int>

 	--source <source>, -s <source>

 	--target <daemon>, -t <daemon>

 	send() (sauron.NotificationMessage method)

 	send_message() (in module lnote)

 	

 	set_quiet()

 	shell_word_count() (in module stl)

 	stl (module)

 	
 stl command line option

 	

 	--directory <directory>, -d <directory>

 	--extension <extension>, -e <extension>

 	--force, -f

 	--help, -h

 	--logfile <path>, -l <path>

 	--project <name>, -p <name>

 	--quiet, -q

 	--target <daemon>, -t <daemon>

U

 	

 	username (built-in variable)

W

 	

 	wc_message() (in module stl)

 	wc_message_builder() (in module stl)

 	

 	work_emacs_daemons (in module sauron)

 	work_log (built-in variable)

 Copyright 2011, Sam Kleinman.

 _static/minus.png

_static/comment-bright.png

usage.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Personal Status Logger (stl) documentation »

stl Manual Page

Synopsis

This document provides an overview of stl from the perspective of
the user concerning both the script itself [http://git.cyborginstitute.net/?p=stl.git;a=blob_plain;f=bin/stl;hb=master] as it exists in
“stock” format, and how many will choose to customize the script. See
“stl Internals” for more information on the underlying functions,
operation, and the code paths of the script.

Basic Usage

This section describes the invocation and purpose of various stl
commands, ignoring most of the internals of the script.

Note

While you may want to set up interfaces for calling stl
directly, in most cases stl will run fairly regularly as a cron
job.

stl commands take the following basic form:

stl [domain] [worker] [project] [options]

The elements of this command are:

		
[domain]

		You may omit this layer in some cases, but is useful if you need
to maintain two separate log files, with two separate sets of
projects.

If this term does not match one of the defined commands, then the
program exits with help text.

		
[worker]

		In the default implementation this is either “make”,
“stats”, report”, or “output” and defines the major
fork in the behavior of the program. “make” will build a
project, while “stats” provides access to word count and latest
build times, “report” displays the output of the last build,
while “output” is responsible for modifying the default output
style.

The default worker option is “stats”.

		
[project]

		A keyword that defines each project. stl requires this option
for successful output. The make worker only accepts one
argument, while stats can handle multiple projects in some
cases.

		
[options]

		Some workers, accept additional arguments or messages.

The stats worker is the default and returns statistics about
your projects. The options are:

		wc, generates a word count for the project

		build, returns information about the last build generated by
the make worker.

		force, force stl to generate output even if the value of
the output has not changed since the last output.

The entry worker provides the capacity for
recording arbitrary message to the log. The options are:

		start, append a note to mark the beginning of a period of
work on a project.

		stop, appends a note to mark the end of a period of work on
a specific projec.t

		note, appends the remainder of the command line arguments to
a note that stl writes to the log.

The make worker runs a specific build routine for a
project, you will configure options by default when setting up the
project. For sphinx projects, the make worker provides the
following options:

		clean

		html

		latex

		epub

		sffms

These correspond directly to a target in the default Makefile
that sphinx-quickstart generates. You may specify multiple
options to generate multiple outputs. The ikiwiki builder uses
the remainder of the command line argument as string that becomes
the commit message for the wiki’s git repository.

The report worker provides an interface to view the build
reports generated by previous runs of the make
worker. report always displays only the last build for
whatever project you specify. You must specify one of the following
log viewers.

		less opens the build report file using the less
command.

		more opens the build report file using the more
command.

		cat outputs the build report file using cat.

		emacs-new opens the log file in a new graphical
emacsclient window.

		emacs opens the log file in an
existing emacsclient instance.

		emacs-term opens the log file in a terminal
instance emacsclient.

		term opens the build report in a new terminal window
(i.e. urxvtcd) using the less command.

Customizing stl

The example stl included here is reasonably generic, but all users
will need to customize the code at least a little. All user
customizable code resides at the bottom of the file. Continue for more
detail on these customizations.

At the very end of the file the following “main” function, which
is the user’s entry into the code, which resembles the following:

main(){
 ARG=($@)

 case $ARG[2] in
 (make) ACTION=make ;;
 (stat*) ACTION=stats ;;
 (entry*) ACTION=entry ;;
 (report) ACTION=report ;;
 (*) ACTION=stats ;;
 esac

 domain=$ARG[1]
 ARG[1]=()

 case $domain in
 (tycho) tycho-worker $ARG; exit 0 ;;
 (job) job-worker $ARG; exit 0 ;;
 (*) echo "help text"; exit 1 ;;
 esac
}
main $@

The first case statement sets a variable that the
action-handler function uses. The second case statement
selects the domain.

If you modify the first statement, add corresponding code to the
action-handler function. action-handler calls the functions
that do something (i.e. “actions.”) The second case statement simply
passes arguments to the next user customizeable function, which is the
“domain-selector.”

For the the first case statement, it’s important to set a good default
(i.e. stats) as most invocations of the program will be
“stats” operations, and the action function itself can handle
errors more clearly. For the second operation, it makes sense to
produce an error, because if one there is no domain, there is no way
to proceed.

See “tycho-selector”, which is an example “domain-selector” function:

tycho-selector(){
 PROJECT=projects
 LOG_TAG=tycho

 for argument in $ARG; do
 case "$argument" in
 (ae) queue=($queue al-edarian); shift ;;
 (mars) queue=($queue knowing-mars); shift ;;
 (admin) queue=($queue cyborg-admin); shift ;;
 (gmg|mg) queue=($queue mediagoblin);
 WC_PATH=~/projects/mediagoblin/docs/source
 shift ;;
 (rhizome) queue=($queue rhizome); shift
 PROJECT_PATH=~/assemblage/rhizome/
 WC_PATH=$PROJECT_PATH
 BUILD_TYPE=wiki; EXTENSION=mdwn
 ;;
 (assemblage|ass) queue=($queue assemblage); shift
 PROJECT_PATH=~/assemblage/
 WC_PATH=$PROJECT_PATH
 BUILD_TYPE=wiki; EXTENSION=mdwn
 ;;
 (wikish|wiki) queue=($queue wikish); shift
 PROJECT_PATH=~/wikish/
 WC_PATH=$PROJECT_PATH
 BUILD_TYPE=wiki; EXTENSION=mdwn
 ;;
 (*) # continue silently ;;
 esac
 done

 action-handler $@;
}

The “domain-selector” functions set variables that describe the
sub-projects in the domain that the “actions” use. The main reason
to have separate projects is to be able to log statistics into
separate files.

There are two constants set at the beginning of the “domain-selector.”
Consider them and their purpose:

		$PROJECT describes the domain and unless overridden the
directory in which all sub-projects reside.

		$LOG_TAG describes the string that prefixes log items when
sending the log via XMPP.

The initial version of the script assumed each “domain” would refer to
a group of projects that were sub-directories of a single “domain”
folder. This is why the “ae”, “mars”, and “admin” projects
only set the $queue variable. However, it’s not practical to force
projects into such a rigid hierarchy, and as a result, these defaults
can be overridden, which is what happens in the other sub-projects.

The key variables here are:

		$queue is an array that holds lists of sub-projects. For many
workers, as long as you don’t mix Sphinx and Ikiwiki builds, you can
specify multiple projects and, and stl will report or act on all
of them.

Note

While script uses this basic “queue” structure in a number of
places, given the way that the shell (and I) have set up the
variables, means that this functionality is not as robust as it
ought to be. In the interests of reliability over correctness,
the script should always “do the right thing” if you only
specify one project in an invocation.

		$WC_PATH is the location of the source files. By default, the
script will look for source files in “$PROJECT/source/$queue.item”
(where $queue.item is an element in the $queue array.) Set
WC_PATH to override this.

		$PROJECT_PATH is the path of the project files. Unless set this
defaults to “~/project”.

		$BUILD_TYPE specifies which “build method” to use. Current
options are wiki for Ikiwiki instances (stored using git), and
sphinx. The default is sphinx.

		$EXTENSION specifies the file extension of the files. Defaults
to rst. Used to ensure that the word counts do not include
extraneous files.

Set any or all of these variables in each case statement. You may now
begin using stl to track the stats of your task.

 © Copyright 2011, Sam Kleinman.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		Personal Status Logger (stl) documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Sam Kleinman.

code.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Personal Status Logger (stl) documentation »

Code and Organization

Note

This document explains my rationale for writing the zsh version of
stl in the way that I did. While this document may be useful
for you as a legend for understanding this script, the truth is
that the zsh stl is only useful as a prototype, and needs to be
rewritten in a more modular and maintainable system. – tychoish [http://tychoish.com/]

Coding Goals

The goals in writing this script were:

		To have something that separated the “worker” functions, from the
configuration or settings. In the past I’d used a lot of environment
variables set early in a script that I could use to customize the
script. While this approach is functional, it’s not very flexible,
and it means that in order to use the script, you have to mangle a
lot of variables just right. Putting all of this configuration
into command-line options is similarly insufficent for making usable
or generalizable tools.

		To use case statements, and for loops, when possible to
solve all of the repetitious code problems I was having in a previous
version, without resorting to long, complex, and finicky
conditionals.

		To set good defaults and use them when possible. This both makes the
script easier to set up, and also makes it easier to add new
projects. The assumption is that you have a “~/projects”
directory beneath which are a collection of projects
published/managed by Sphinx, with rst (or .txt) extension. the
script can do other things, but that takes a (bit) more work.

		To run quickly. While there’s a lot of crude elements and
inefficiencies (particularly around blunt use of loops and not
exiting if the options are verifiable invalid,) it rarely takes very
long to run, and is able to finish quickly. There are minimal
external dependencies, and most of the script stays in ZSH. There’s
some use of the date command, and a call to wc
to return word counts, and two “ifconfig | grep” calls to see if
networking is up to configure the notification.

File Organization

stl begins with a number of reusable generic functions, and ends
with a number of deployment specific functions that you’ll need to
customize so that the script knows where to find your files and
work. See the previous section for more
information on how to customize the script for personal usage, and the
code paths section for more information on
how the interpreter processes the code.

This section provides an inventory, as they appear in the file, of
each function and it’s general purpose.

		notify-init configures the notification system, and creates a
notify function that either logs the output of script to a
logfile (i.e. “~/$PROJECT/stats.log”) or sends an xmpp message
using an xmpp-notify script that is also included in the
distribution.

The script will use the log file if:

		There is no network connection.

		The file “/tmp/$PROJECT-stats/log” exists.

Otherwise the script will send log messages to XMPP. Use a command
in the following form to toggle XMPP/log file logging.

stl [domain] output xmpp
stl [domain] output logfile

Remember that you must configure your domain before running this
command.

		action-handler is a simple function that holds a case statement
that calls another functions that does the actual work of the
script.

		stats-log allows users to create a number of entries in the log
with arbitrary messages, to provide the build reports and word
counts with context. stats-logs requires that you specify a
start, stop, or note, followed by a message.

Output follows the system configuration for “logfile” or “xmpp”
notifications.

		build-report opens or outputs the contents of the last build of
the specified project or projects. Use these options to check for
build errors.

		stats-base is the main worker function of stl, and it checks
and returns word counts for projects primarily. Unless you include
the “force” argument, this function will only return data if
the value is different from the value when the script was last
run. Every time the script runs, it checks against the last new
value written in the “/tmp/$PROJECTS-stats/ folder.

		compile-project triggers a rebuild or build of the project. It
supports Sphinx (including sffms [http://pypi.python.org/pypi/sffms/],) and Ikiwiki using git. The
function writes the output of the build process to files in the
“/tmp/$PROJECT-stats” folder, and logs completion via the
notify function.

		domain-selector is a function that sets sub-project specific
variables before calling the “action-handler” function.

		main the primary function of the code, and the only function
that the main body of the script calls directly.

 © Copyright 2011, Sam Kleinman.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

