

 Navigation

 	
 index

 	
 next |

 	Taskfile

Taskfile: A Tasklist Compiler

Taskfile is aggregates task information from text files using GNU
Make. Taskfile supports task tracking for a diverse collection of
workflows and tools.

Contents

	Working with Taskfile

	Setup and Configuration

	Taskfile Internals

	Integrating Taskfile with Emacs

	Contribute to Taskfile

	Glossary

	Index

Resources

	taskfile git repository [http://git.cyborginstitute.net/?p=taskfile.git]

	taskfile on Github [https://github.com/tychoish/taskfile/]

	taskfile issue tracker [http://issues.cyborginstitute.net/]

The latest version of this manual is also available for download in
ePub and PDF formats:

	Taskfile Manual, ePub

	Taskfile Manual, PDF

Overview

Taskfile, using GNU Make, compiles a tasklist from one or more
directories of files, using keywords (i.e. “TODO”, “FIXME”,
“FROZEN”) to identify tasks and then generate a task
list. Basically, you focus on your own work, create tasks as you need
to, and run “make” every now and then. While
the approach is exceedingly simple, there are a number of practical
advantages that this approach provides:

	Task planning can transpire in-parallel with actual work on code or
writing, without needing to switch to a task management systems.

	Complete interoperation with number of existing tools and systems,
including:
	Ikiwki

	Sphinx

	Git

	File systems and text files.

	Emacs’ markdown mode, occur, and deft.

	Pretty much anything else you want.

	Using GNU Make, makes it possible for the aggregation operation to
be very efficient and robust, so you can use it against large
collections of files.

	The implementation of Taskfile is nearly trivial. Dozens of
make/shell lines do everything that you need, so it’s easy to
improve, extend, and tweak how the system works.

In truth this “project,” if I may be so bold, is more about the text
and documentation that surrounds the code than the other way
around. Thus, consider this documentation set a primmer on creating
your own Taskfile-based system.

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Taskfile

Working with Taskfile

Synopsis

Above all, Taskfile aims to provide a means to create task lists with
as little conceptual overhead as possible. As long as you can find a
way to include unique markers to identify your tasks and your work
exists in “grep“-able text format, you should be able to use
Taskfile without much modification. This document discusses usage
patterns how to integrate Taskfile into practical workflows.

Patterns

Once you’ve configured Taskfile, running the
make command in the directory where the makefile lives is usually
all you need to do. The makefile provides a “make todo” operation
that prints the task list, or you can view the output using an
interface like Geektool [http://projects.tynsoe.org/en/geektool/],
Ikiwki [http://ikiwiki.info] or preferred text editor. Ikiwiki, and
Emacs’ [http://gnu.org/s/emacs]‘ Markdown Mode [http://jblevins.org/projects/markdown-mode/] provide linking ability
ability that facilitates “moving backwards” from the task on the
“todo” output to the embeded task in a file.

There are two major approaches to organizing a Taskfile system:

	Do work in files and insert task items that Taskfile
(i.e. grep) will pickup. Embedding tasks is simple and there’s
no real downside, though you can end up with task items in
inopportune places if you’re careless.

	Maintain a collection of project-specific “tracking” or notes files
for task planning that contain a few notes and some “TODO”
option.

Both modalities are equivalent and Taskfile doesn’t “prefer” one over
the other. There is no need to work in a “pure” system: you can mix
“embeded tasks” within a notes file, or just use “tracking files” that
are only tasks.

Taskfile includes the source location of the file that contains the
task item. Thus, the real implication of the embeded versus tracking
is that sometimes tracking files make it difficult to trace back from
the tasklist to the place where you need to do work. In practice,
combination of both modes often proves most optimal.

For day-to-day and moment-to-moment work you may choose to keep a
view of the of your task list or task lists open at all times either
in an editor window or as a rendered page in a browser, and then use
this to either jump to the relevant file to begin work. Many text
editors have file searching functionality that makes it possible to
find all references of a string within a file, [1] that you may
find helpful.

	[1]	In emacs this is “occur” mode. TextMate [http://macromates.org] also has or had a “TODO” mode that
performs a similar function.

Components

Projects

In the context of Taskfile, a project represents a class of
non-overlapping tasks that Taskfile will aggregate into separate
lists. In other project management systems, projects often refer to
smaller groupings of tasks, where a project might be a document, or a
release of a piece of software, or some other logical grouping. In
Taskfile, you may use projects to filter the tasks that you’re
currently working on with from tasks marked “future” or “frozen.”
Conversely, you may use project separation to separate tasks for
personal and side projects from your works projects based on keyword
or source file path.

The goal of Tasklist is to provide an aggregate view into all of your
tasks so that you’ll be able to see at a glance what tasks require
your attention without relying on your memory to remember
tasks. Usually this means “make all tasks visible all the time,” but
it sometimes makes sense to seperate some conceptually distinct
tasks. Used judiciously, projects are great for keeping things
organized.

There are two features of the way Taskfile handles projects that are
worth noting:

	Projects make it difficult to track and follow tasks back to their
original location in the source file. Sometimes this doesn’t
matter.

	Project separation is easy to configure, but requires some manual
intervention in the makefile itself. See “Setup and Configuration” and
“Taskfile Internals” for more information.

Keywords

Keywords are unique strings of characters that identify
tasks. There are no formal limitation on what can be a keyword, but
they should be distinct, the default behavior is for keywords to be
case sensitive but this is simple to disable. The default keywords
are:

	TODO

	FIXME

	EDIT

	ONGOING

	FUTURE

	FROZEN

Specify these keywords in regular expression syntax, [2] and
keywords can be quite specific, both in terms of the letters used and
their position in the line. The best keywords contain characters that
are unlikely to appear naturally in the source text files. Case
sensitivity helps reduce collisions, but certain letter combinations
are incredibly uncommon in some languages (i.e. “tk” and “q”
followed by most letters.)

You may also consider requiring that your keywords the keyword appear
at the beginning of a line (which is in the default makefile.) You may
also wish to require that your TODO item take the form of a comment in
whatever syntax your textfiles are in.

	[2]	Unsurprisingly, perhaps, Taskfile uses “grep -E” to
find and filter tasks from the source files.

Integration

The “make todo” output of the task list is good for most
rudimentary tasklist viewing; however, more serious operations may
require a more interactive tasklist. In most cases, whatever tools you
use to edit your source files work fine with the output of Taskfile,
and it’s easy to modify some common tools to provide support for the
taskfile output.

Ikiwiki provided the initial inspiration for, and hosting of, Taskfile
and the default configuration maintains compatibility with this
approach. Just make sure that Taskfile’s output has an extension that
Ikiwiki can parse and ends up in a location that Ikiwiki will build.

If you use Emacs, the following modes and features may be useful for
interacting with Taskfile:

	Markdown Mode [http://jblevins.org/projects/markdown-mode/]

The latest versions of markdown mode, include an automatic
wiki-link following feature that allows you to travel from the
current file to the linked file within the file by overloading the
“Enter” key.

	Occur Mode [http://emacswiki.org/emacs/OccurMode]

Recent versions of Emacs include occur, which and searches and
indexes textfiles. Use occur within the source files, to find
instances of keywords within a file. Occur cites line numbers and
makes it easy to jump to specific line numbers.

	Auto-Revert Mode [http://www.emacswiki.org/emacs/AutoRevertMode]
or Revbufs [http://www.neilvandyke.org/revbufs/]

Because Taskfile generates the todo files outside of Emacs, use a system
like auto revert mode or revbufs to get emacs to refresh the
buffer from the disk when you update.

	Compile Mode [http://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode.html]

Emacs includes compile mode that provides an easy method to run,
rerun and monitor make and make-like processes within emacs.

Note

Most text editors contain some or all of these features, with
different interfaces and names. If you use another text editor,
consider contributing documentation to Taskfile
to explain these functions and possible configurations.

Internal Approach

Taskfile operates by scanning a directory tree for files that contain
or begin with a TODO keywords and copying only
those TODO lines to a “cache.” Todo lists are then built from this
mirrored “cache tree.” GNU Make’s dependency checking allows Taskfile
to only scan or rebuild those files when the source files change.

Depending on the number of files and the number of lines in the file,
the initial creation of a crash can take several seconds; however,
incremental rebuilds of the list should complete in less than a
second.

Taskfile’s predecessor was a simple shell script. Although this script
used many of same basic operations it had no dependency checking and
had to aggregate all of the data on every run, was more difficult to
customize, and was not a feasible solution for checking projects with
large numbers of files or a large amount of data.

The primary limitation of Taskfile at present is the fact that many
deployments will require some duplication of the Taskfile makefile to
track different project trees create different outputs. While the
duplication is a concern, the fact that users must tweak and maintain
unique makefiles is a larger concern. Future distributions of Taskfile
will include a “meta-maker” that will guide some Taskfile
customization.

See also

“Taskfile Internals“

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Taskfile

Setup and Configuration

This document addresses basic setup and configuration of Taskfile. For
more in-depth information on using taskfile for day-to-day see
“Taskfile Internals” for descriptions of all components within Taskfile.

Installing

To install Taskfile:

	Clone the taskfile repository. For example:

git clone http://cyborginstitute.com/git/taskfile.git

	Copy the primary taskfile.make into your default notes
directory where you keep your text files [1]
(e.g. “~/notes”) and rename it as needed. For example:

cp taskfile/taskfile.make ~/notes/makefile

	(Optional.) Copy the taskfile.project to another project
folder (e.g. “~/projects/”) and rename it as needed. For
example:

cp taskfile/taskfile.proejct ~/projects/makefile

Congratulations! You have now installed Taskfile. Continue reading,
and consult “Taskfile Internals” for more information regarding your
Taskfile system.

	[1]	Because Taskfile recurses into all sub-directories, you
can place the makefile anywhere, as long as you have tasks below
this point in the hierarchy. At the same time you may want to chose
carefully because Taskfile must scan (and create a mirror every
directory (and potentially every file) within this directory tree
every time you refresh your list. Use symbolic links and groups of
folders to limit your taskfile as needed.

Configuration

The default configuration is sufficient for most basic uses: if all
the project files you use are in a single folder, and you do not need
to generate multiple lists, you may only have to modify the following
variables at the beginning of the makefile, which control the input
and output of the taskfile build system:

	EXTENSION,

	SOURCE,

Including whitespace and comments, the makefile is under 200 lines,
and only 20-30 lines, or so, are relevant to the operation of
Taskfile. Complete documentation of all taskfile elements is in the
internals page.

Customizing

There are many possible customizations. However, there are two major
classes of customization for Taskfile systems:

	Creating different aggregation selections and outputs, to separate
work domains that don’t share any contextual overlap.

Currently, by default, Taskfile supports a single todo.mdwn
output. However, there are two additional outputs possible in the
default taskfile, if you un-comment and modify several lines. Using
these targets and variables as an example you can create any number
of unique aggregations.

Consider the following: In addition to adding targets to build a
secondary tasklist, you must also ensure that those items on that
secondary items do not end up on your primary list (unless you want
them to.)

	Modifying the output of the taskfile output to enhance capability
with your own preferred text file editing system.

Currently, Taskfile produces Markdown output that allows for a
double square bracket “wiki link” syntax (i.e. [[link]]) to the
page that contains the original source of the task item. Modify the
transformation in the sed expression in the end of the
$(OUTPUT) target. Alternatively, you can add an
additional expression (e.g. “-e s/^TODO/TASK/”) to the end of
this statement (before “| sort -u >> $@”.)

Extending

Because Taskfile is just a makefile, and a reasonably simple
makefile at that, there are a number of options and directions that
you may chose to take if you want to extend Taskfile. This section
contains a list of possible extensions and enhancements to Taskfile:

	Additional output formats:

Make exists to generate output according to custom specifications,
so it’s trivial to add new output formats to a makefile, assuming
you have generic converters. Consider the following “extension,”
which uses Multi-Markdown [http://fletcherpenney.net/multimarkdown/]
to convert the standard markdown output of Taskfile to PDF.

taskfile: [...] $(OUTPUT_FILE_NAME).pdf

$(OUTPUT_FILE_NAME).tex:$(OUTPUT)
 mmd2LaTeX.pl $<
$(OUTPUT_FILE_NAME).pdf:$(OUTPUT_FILE_NAME).tex
 pdflatex $(OUTPUT_FILE_NAME).tex

	Integrate into emacs (or other text editor:)

There are a number of functions and keybindings in the
taskfile.el that you may find helpful. These functions make
it possible for you to:

	Regenerate your taskfile inside of Emacs, using compilation-mode.

	Change a task state to “DONE“

	Open the tasklist (i.e. OUTPUT) from a key
binding.

	Open a “flow” buffer for ad hoc tasks.

See also

Integrating Taskfile with Emacs

	Git Integration:

Run Taskfile as part of a pre-commit hook to update the taskfile
before committing the repository.

Conversely, you may want to exclude your Taskfile output from
version control because it’s always possible to generate the
taskfile.

	Scheduling with Cron:

Because re-generating the Taskfile output is efficient, it’s safe to
run as a cron task.

While the initial distribution of Taskfile should be as simple and
“base” as possible, we can include any good and appropriately licensed
extension in the default distribution. See “Contribute to Taskfile for
more.

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Taskfile

Taskfile Internals

This document describes the internal operation and components of the
Taskfile makefile. Use this document as a reference in support of the higher
level discussion of Taskfile customization.

Variables

	
MAKEFLAGS

	Defines the default flags for make. For Taskfile, this
is “-j4” but you can use more or less depending on your system.

Location and Output Variables

	
SOURCE

	Specifies the top level of the file system tree where all files
that might include task items. Consider using a path like
“~/wiki”, “~/deft”, “~/notes”, “~/writing” or
wherever your working text and project planning files live.

	
CACHE

	The directory where Taskfile stores the cached extraction of task
items from the SOURCE files. Ensure that the Taskfile cache is
not tracked in version control. Consider using
“.git/taskfile-cache” or place the CACHE path in your
.gitignore or other similar exclusion file.

	
OUTPUT_FILE_NAME

	Typically this is “todo” and represents the name of the file
where Taskfile writes it output.

This variable does not include the file extension.

	
EXTENSION

	Specifies the file extension for the of the files that contain the
task list. This extension is also added. to the file name of the
output file, and should not contain a “.” character.

Taskfile can only look for todo items with one extension, while
this might present as a limitation, it ensures that Taskfile will
only scan files that might have task items.

	
OUTPUT

	The full path, including file name, of the file where Taskfile will
write the tasklist.

The default value for this variable is
“$(SOURCE)/$(OUTPUT_FILENAME).$(EXTENSION)” and Taskfile will
set this value if you do not set another value.

	
EXTRA_OUTPUT_DIR

	The default value for this variable is
$(SOURCE)/$(OUTPUT_FILENANE), although you can override this
value.

	
PROJECTS_OUTPUT

	Defines a target to build for project specific output.

Typically a distinct makefile (e.g. a separate Taskfile instance)
builds these projects specific lists. This and
PROJECTS_MAKEFILE simply provide pointers to the other
Taskfile instance to provide a centralized user interface.

	
PROJECTS_MAKECONTEXT

	The path to a “projects” taksfile’s directory context. Called as
“make -C $(PROJECTS_MAKECONTEXT)”. This line is, however,
commented out in the distributed version of taskfile.

Patterns and Filters

	
KEYWORDS

	Defines the search pattern for a grep command that finds
the items Taskfile aggregates as “task items.” Taskfile calls
this grep in the following form, with the KEYWORDS variable:

grep -E "($(KEYWORDS)).*"

The default expression is:

^TODO|^DEV|^FIXME|^WRITE|^EDIT|^FUTURE|^FROZEN|WORK

Modify the expression as needed.

Note

Taskfile sorts the output of grep when making the task list,
which may impact how your organize your Taskfile
query. Furthermore, regular expressions that anchor the search
pattern (i.e. “^” for the beginning of the line, or “$”
for the end of the line,) often show better performance,
depending on the structure of your search content.

	
FUTURE_FILTER

	Holds a name for the “future” filter, used to create a secondary
list of non- or less-actionable items.

Note

The default distribution of tasklist has no enabled targets that
build the FUTURE_FILTER task lists. If you want to build
a future task list, you will need to un-comment these
sections. See the “Setup and Configuration” document for more
information on this process.

	
FUTURE_KEYWORDS

	Holds a list of keywords, passed as in “KEYWORDS” to
grep. Used to

Note

There are no active targets that build the “future” versions of
the task list, as future task lists require some measure of
customization. See the “Setup and Configuration” document for more
information on this process.

However, items that use one of these keywords are not
included in the primary tasklist.

	
WORK_FILTER

	As FUTURE_FILTER, WORK_FILTER makes it possible to
build tasklists from work-based tasks. Whereas
the $(FUTURE_OUTPUT) (using FUTURE_FILTER) builds
a separate tasklist, based on a special keywords,
$(WORK_OUTPUT) using WORK_FILTER creates a
separate tasklist by filtering out some items based on their
location in SOURCE.

Note

There are no active targets that build “work” tasklists in
default taskfile, because work tasklists require some measure of
customization. However, no items in locations that include the
WORK_FILTER term will appear in the primary taskfile.

See also

$(WORK_OUTPUT)

Consider the “Setup and Configuration” document for instructions
regarding configuring the work tasklists.

Project Variables

	
FUTURE_OUTPUT

	Defines the location for the “future” task list. In the default
distribution of Tasklist, this variable has a value of:

$(EXTRA_OUTPUT_DIR)/$(FUTURE_FILTER).$(EXTENSION)

In most cases you will not need or want to modify this value. This
variable expands to a path of “~/wiki/todo/future.mdwn”
given the default configuration.

See also

The following variables, for documentation of the
default value of this variables:

	EXTRA_OUTPUT_DIR

	FUTURE_FILTER

	EXTENSION

Additionally, consider the commented $(FUTURE_OUTPUT)
target in the default distribution for an idea of the
future tasklist’s implementation.

Note

There are no active targets that build the “future” versions of
the task list, as future task lists require some measure of
customization. See the “Setup and Configuration” document for more
information on this process.

	
WORK_OUTPUT

	Defines the location for the file where taskfile writes the
work tasklist. The default value for this
variable is as follows:

$(SOURCE)/$(WORK_FILTER)/$(OUTPUT_FILE_NAME).$(EXTENSION)

In most cases you will not need or want to modify this value. Given
the default values, this expands to “~/wiki/work/todo.mdwn” in
the default configuration.

See also

The following variables, for documentation of the
default values for these variables:

	SOURCE

	WORK_FILTER

	OUTPUT_FILE_NAME

	EXTENSION

Additionally, consider the commented $(WORK_OUTPUT)
target in the default distribution for an idea of the
work tasklist’s implementation.

Note

There are no active targets that build the “future” versions of
the task list, as future task lists require some measure of
customization. See the “Setup and Configuration” document for more
information on this process.

	
EXTRA_OUTPUT_DIR

	Defines a directory within the SOURCE directory that holds.
additional outputs and dependent files. The
$(FUTURE_OUTPUT) builds into this directory, and a number
of “template” files are in this directory. The SOURCES does
not include items from this directory.

In the default configuration EXTRA_OUTPUT_DIR has the
following value:

$(SOURCE)/$(OUTPUT_FILENANE)

If this variable isn’t defined in the beginning section of the
taskfile, Taskfile will provide a default.

	
NAME

	This variable only appers in the projects taskfile. This
value forms the basis of the projects-specific taskfile output, and
contributes to several other variables.

	
OUTPUT_DIR

	This variable only appers in the projects taskfile.

Default Variables

Taskfile supplies default values for the following values that
are necessary for Taskfile operation, if you do not define custom
values at the beginning of the file.

	
OUTPUT

	Unless set at the beginning of the file, the value of OUTPUT
is “$(SOURCE)/$(OUTPUT_FILENAME).$(EXTENSION)”.

See also

OUTPUT and thehe following variables that
affect the value of OUTPUT in this default configuration:

	SOURCE

	OUTPUT_FILENAME

	EXTENSION

	
EXTRA_OUTPUT_DIR

	Unless set at the beginning of the file, the value of
EXTRA_OUTPUT_DIR is “$(SOURCE)/$(OUTPUT_FILENANE)”.

See also

EXTRA_OUTPUT_DIR and the following variables
that affect the value of EXTRA_OUTPUT_DIR in the default
configuration:

	SOURCE

	OUTPUT_FILENAME

	
TMPL_DIR

	The TMPL_DIR variable only appers in the
project-specific default taskfile. In the default setting this path
should match EXTRA_OUTPUT_DIR in the main Taskfile.

	
OUTPUT_FILE_NAME

	Unless set at the beginning of the file, the value of
OUTPUT_FILE_NAME is “todo“

See also

EXTRA_OUTPUT_DIR.

Computed Variables

The following variables use computed forms to generate lists or
functions which underpin the operation of the targets that produce the
tasklist.

	
SOURCES

	Generates a list files that end with the EXTENSION. Excludes
the output filneame and some temporary files. Taskfile computes
SOURCES using the find command and filters the results
with grep. The value of this variable is:

$(shell find $(SOURCE) -name "*$(EXTENSION)" -not \(-name ".\#*" \) | grep -v "$(OUTPUT_FILE_NAME)")

	
SOURCEDIR

	Returns a list of all directories, with recursive resolution that
may contain source files. SOURCEDIR only appears in the
CACHE_DIRS variable. It has the following value:

$(shell find $(SOURCE) -type d -not \(-name ".*" -prune \) -not \(-name "$(OUTPUT_FILE_NAME)" \))

	
CACHE_DIRS

	Using GNU Make’s string substitution function, CACHE_DIRS
generates a list of directories but substitutes the path of the top
level SOURCE directory for the name of the CACHE
directory in the value of SOURCEDIR. The actual value as
specified is:

$(subst $(SOURCE),$(CACHE),$(SOURCEDIR))

This variable ensures Taskfile creates all required
directories in the task cache before attempting to write files.

	
CACHE_INDEX_FILES

	Using a nested string substitution, CACHE_INDEX_FILES
replaces CACHE with SOURCE, and ”.:var:EXTENSION”
with ”.:var:OUTPUT_FILE_NAME” for all of the files in the
SOURCES directory that have end with the
EXTENSION. For instance, given the default configuration and
a file in SOURCES such as “~/wiki/shopping.mdwn”, this
will become “.git/tasklist-build/shopping.todo”. The code
itself is:

$(subst $(SOURCE),$(CACHE),$(subst .$(EXTENSION),.$(OUTPUT_FILE_NAME),$(wildcard $(SOURCES)/*.$(EXTENSION))))

	
CLEAN_UP_DELETED_FILES

	Defines a shell function/loop for use in the cleanup routines that
deletes files in the CACHE` directory if they do not exist
in the SOURCE directory.

In some cases, if you delete or move a file within the
SOURCE hierarchy, stale tasks remain on the list. Use
clean to run this routine.

The code that implements this function, formatted for easy reading,
is as follows:

for item in `find $(CACHE)/ -name "*$(OUTPUT_FILE_NAME)"` ;
 do
 temp=`echo $$item | sed -e "s/$(OUTPUT_FILE_NAME)/$(EXTENSION)/" -e "s@$(CACHE)@$(SOURCE)@"`

 if [[! -f "$$temp"]]
 then
 echo "rm $$item"
 rm $$item
 fi
done

See also

The “clean” target. Additionally this
shell operation uses the following Make variables:

	CACHE

	OUTPUT_FILE_NAME

	EXTENSION

	CACHE

	SOURCE

Targets

User Interface

These targets provide an interface and outputs for Taskfile. While
these targets do not write data to the cache or output, some have
dependencies that may trigger a rebuild.

	
help

	Returns a brief help text that lists the available build targets
and a brief overview of their use.

	
todo

	Prints the todo list to the terminal with cat.

This target depends on OUTPUT, so will rebuild the todo list
if it is out of date

	
todo-work

	Prints the work-specific todo list to the terminal with cat.

This target depends on WORK_OUTPUT, so will rebuild the
work-specific todo list if it is out of date.

Note

The default distribution disables this target by default.

	
todo-future

	Prints the aggregated future-todo list to the terminal with cat.

This target depends on WORK_OUTPUT, so will rebuild the
aggregated future-todo list if it is out of date.

Note

The default distribution disables this target by default.

Meta Targets

These targets provide dependency groupings for task list to support
basic operation and configuration, but do not build output directly.

	
all

	Provides a single interface to build or rebuild all of the Tasklist
output files and their dependencies.

This is the default target for the Taskfile makefile.

See also

all depends on the following targets:

	$(SOURCES)

	$(CACHE)/.setup

	$(CACHE_INDEX_FILES)

	$(CACHE)/$(OUTPUT_FILE_NAME).list

	$(OUTPUT)

The following dependencies are not enabled by default:

	$(FUTURE_OUTPUT)

	$(WORK_OUTPUT)

	
setup

	Runs a sub-make process that builds the $(CACHE)/.setup
target. This creates all of the required directories and template
files for the Tasklist process.

Core Aggregation

This group of targets does the actual core “work” of Taskfile: by
creating the cache, collecting the task items, and aggregating the
core output list.

	
$(CACHE)/.setup

	This simple configuration target creates all required cache
directories, and touches several template files that makes it
possible to build the Tasklists without error.

The target creates the following directories:

	CACHE (to hold taskfile’s cache.)

	CACHE_DIRS (to mirror the directory structure so that
later targets don’t attempt to write to impossible paths.)

	EXTRA_OUTPUT_DIR (to hold template files and special
output.)

And creates empty files (with the touch utility:)

	
$(EXTRA_OUTPUT_DIR)/tmpl.$(WORK_FILTER)

	Ensures that the “tmpl” file for the work-output
exists. Taskfile inserts the contents of this file into the
beginning of the work-output file before the task
items. Taskfile does not generate work-output unless you edit
the Makefile to uncomment the relevant targets.

	
$(EXTRA_OUTPUT_DIR)/tmpl.$(FUTURE_FILTER)

	Ensures that the “tmpl” file for the future-output
exists. Taskfile interest the contents of this file into the
beginning of the future-output file before the task
items. Taskfile does not generate future-output unless you edit
the Makefile to uncomment the relevant targets.

	
$(CACHE)/.setup

	Taskfile creates this folder to satisfy the dependency checking
for the setup target.

The build target is just an empty placeholder file.

	
$(CACHE)/%.$(OUTPUT_FILENAME)

	This target depends on $(SOURCE)/%.$(EXTENSION), and is
responsible for creating the cache. The cache is a mirror of all
the source directory tree, except that only lines that contain a
match for the regular expression specified in KEYWORDS.

The “%” character acts as a wildcard, and when used in both the
target and the destination, this target ensures that Taskfile
updates the cache whenever a file that matches the dependency
(i.e. all files in the SOURCE directory hierarchy,) is
rebuilt into a cache target.

Because of the structure of this operation, this target ensures
that Taskfile only parses those files that end with
EXTENSION, and that all files in the cache have a distinct
extension.

Note

This target suppresses normal output and instead prints
“Caching: $(CACHE)/.$(EXTENSION)”.

	
$(CACHE)/$(OUTPUT_FILENAME).list

	This target depends on CACHE_INDEX_FILES, which holds a list
of files that the “$(CACHE)/%.$(OUTPUT_FILENAME)”
generates.

The target performs the following three actions:

	Removes the previous version of “$(CACHE)/$(OUTPUT_FILENAME).list”.

	Outputs the entire contents of every file in the cache.

	Performs a series of transformations to modify the output of
“grep” to provide “back links” in the aggregated list that
points back to the original source file.

	
$(OUTPUT)

	This target depends on the “$(CACHE)/$(OUTPUT_FILENAME).list”
output.

The target performs the following two actions:

	Copies the content of $(EXTRA_OUTPUT_DIR)/tmpl.$(OUTPUT_FILE_NAME)
into the new OUTPUT file. This provides any header
material.

	Performs a series of transformations on the content of the
“$(CACHE)/$(OUTPUT_FILENAME).list” file to remove any
items that match the FUTURE_FILTER,
FUTURE_KEYWORDS, or WORK_FILTER.

Finally Taskfile sorts the output and writes it to the new
OUTPUT file.

Advanced Aggregation

Uncomment and customize these targets as necessary in
taskfile.make file included in this distribution to provide these
advanced aggregation features.

	
$(FUTURE_OUTPUT)

	This target builds the file described by the variable
FUTURE_OUTPUT. It depends on the $(OUTPUT) target.

Procedurally, this target is similar to the $(OUTPUT)
target. $(FUTURE_OUTPUT) has the following components:

	Copies the content of $(EXTRA_OUTPUT_DIR)/tmpl.$(FUTURE_FILTER)
into the new FUTURE_OUTPUT file. This provides any header
material.

	Selects all of the lines that match FUTURE_KEYWORDS in the
file built by the target $(CACHE)/$(OUTPUT_FILE_NAME).list.

Taskfile sorts these lines before writing them to the output
file.

	Performs a series of transformations on the content of the
“$(CACHE)/$(OUTPUT_FILENAME).list” file. All
transformations occur in the target file, the content in the
$(CACHE)/$(OUTPUT_FILENAME).list file is not modified.
These transformations to remove any items that match the
WORK_FILTER, and clean up potential formatting errors.

	
$(WORK_OUTPUT)

	This target builds the file described by the variable
WORK_OUTPUT. It depends on the $(OUTPUT) target.

Procedurally, this target is similar to the $(OUTPUT) and
$(FUTURE_OUTPUT) targets and has the following
components:

	Copies the content of $(EXTRA_OUTPUT_DIR)/tmpl.$(WORK_FILTER)
into the new WORK_OUTPUT file. This provides header data.

	Selects all of the lines that match WORK_KEYWORDS in the
file built by the target $(CACHE)/$(OUTPUT_FILE_NAME).list.

Taskfile sorts these lines before writing them to the output
file.

	Performs a series of transformations on the content imported in
from “$(CACHE)/$(OUTPUT_FILENAME).list”. All
transformations occur in the target file, the content in the
$(CACHE)/$(OUTPUT_FILENAME).list file is not modified.

	
$(PROJECTS_OUTPUT)

	This target, which builds the $(SOURCE)/projects.$(EXTENSION)
file, calls a sub-make in the context of the directory specified by
the PROJECTS_MAKECONTEXT. This assumes that, when active,
there is a projects-specific Taskfile located in the
PROJECTS_MAKECONTEXT.

The taskfile.projects provides an example of such a file.

Cleaning Aggregation

These targets are useful for forcing Taskfile to delete certain files
that have grown stale or that you would like to regenerate during the
next build.

	
clean

	The clean target will delete the generated output, remove
stale files from the cache, and run the setup routine. In short,
this target does everything that you need short of deleting the
CACHE directory to get a good build.

Runs the command specified by the CLEAN_UP_DELETED_FILES
variable.

clean removes the following files directly:

	OUTPUT

	FUTURE_OUTPUT

	WORK_OUTPUT

	PROJECTS_OUTPUT

	$(CACHE)/$(OUTPUT_FILE_NAME).list

When the clean operation has finished, this target runs a sub-make
using the setup (in silent mode.)

	
clean-output

	The clean-output target removes the following files:

	OUTPUT

	FUTURE_OUTPUT

	WORK_OUTPUT

	PROJECTS_OUTPUT

	$(CACHE)/$(OUTPUT_FILE_NAME).list

When the clean operation has finished, this target runs a sub-make
using the setup (in silent mode.)

Use clean-output as a less intensive version of the
clean process because of the omission of the
CLEAN_UP_DELETED_FILES procedure.

	
clean-setup

	The clean-setup target removes the .setup file
created by the $(CACHE)/.setup target.

	
clean-cache

	The clean-cache removes the CACHE directory. When
the clean operation has finished, this target runs a sub-make using
the setup (in silent mode.)

	
clean-dirty

	The clean-dirty removes the CACHE directory.

	
clean-all

	The clean target removes the following files:

	CACHE

	OUTPUT

	FUTURE_OUTPUT

	WORK_OUTPUT

	PROJECTS_OUTPUT

	$(CACHE)/$(OUTPUT_FILE_NAME).list

Building this target will remove all files created by Taskfile.

Dependencies

	
$(SOURCE)/%.$(EXTENSION)

	Used by the $(CACHE)/%.$(OUTPUT_FILENAME).

$(SOURCE)/%.$(EXTENSION) provides a matching dependency for
all the files specified by the SOURCES variable.

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Taskfile

Integrating Taskfile with Emacs

This document provides an overview of the taskfile.el included
in the root of this repository. The organization of this file mirrors
the organization of taskfile.el

Taskfile

Variables

	
taskfile-location

	Defines the full path to your main taskfile. taskfile-open
uses this variable.

	
taksfile-flow-location

	Defines the full path to the flow
file. taskfile-flow uses this variable.

	
taskfile-compile-command

	Defines the make invocation used to rebuild your
taskfile. taskfile-compile uses this variable.

Functions

	
taskfile-mark-done

	This interactive function takes a standard Taskfile task entry (in
the source format) and transforms it into a Markdown list-entry
prefixed by the string “DONE”. For example, the
taskfile-mark-done takes following task:

TODO work on Taskfile Project

and transforms it into:

- DONE work on Taskfile Project

	
taskfile-open

	Opens the buffer that holds the default taskfile. Define the full
path to your taskfile in taskfile-location.

taskfile-open opens the task list in read-only mode, to
prevent unintended editing, and enables Visual Line Mode [http://www.emacswiki.org/emacs/VisualLineMode]

	
taskfile-flow

	Opens the buffer that holds the flow file. Define the full
path to this file in taskfile-flow-location.

	
taskfile-compile

	Runs Emacs’ “compile” command using the make invocation
defined in taskfile-compile-command. Use this to open
compile-mode [1]

	[1]	http://emacswiki.org/emacs/CompilationMode

Deft Mode

Deft [http://jblevins.org/projects/deft/] is a note-taking and notes organization mode for emacs. If you
do not have an existing note taking solution, you may find deft
useful. The taskfile.el provides a few additional functions on
top of deft that you may find helpful either in conjunction with deft,
or on their own.

Variables

The following variables define aspects of deft operation.

	
deft-extension

	Sets the file extension that Deft uses for its files. Typically
this should reflect the value of EXTENSION.

	
deft-directory

	Sets the directory in that Deft looks for files. Typically this
should either be the value of SOURCE or a sub-directory
of the directory defined by SOURCE.

	
deft-text-mode

	Specifies a major-mode to use as the default mode for. Typically
this should be markdown-mode or rst-mode but any available
major-mode in your emacs installation, preferably one that
Taskfile’s regular expressions can parse, will work.

	
deft-auto-save-interval

	Specifies the interval in seconds that deft buffers will
automatically write their contents to disk. Typically the best
value for this setting is nil to prevent this behavior
entirely.

Functions

	
deft-file-make-slug

	This is a helper function used by tychoish-deft-create to
generate a reasonable lower-case and hyphen separated file name.

	
tychoish-deft-create

	Prompts the user to enter the name of a new file, with a filneame
computed from the user input using deft-file-make-slug.

Keybindings

	
C-c d o

	Calls deft.

Mnemonic: “deft open.“

	
C-c d n

	Calls tychoish-deft-create.

Mnemonic: “deft new.“

	
C-c d d

	Opens the deft-directory in a dired buffer.

Mnemonic: “deft directory.“

	
C-c t t

	Calls taskfile-open.

Mnemonic: “taskfile tasks.“

	
C-c t c

	Calls taskfile-compile.

Mnemonic: “taskfile compile.“

	
C-c t f

	Calls taskfile-flow

Mnemonic: “taskfile flow.“

Occur Customizations

At the end of taskfile.el there are a number of modifications
to occur culled from the Emacs Wiki Occur Page [http://www.emacswiki.org/emacs/OccurMode] that may make occur
more easy for you to use. You may choose to omit these customizations
if they conflict or disrupt your current workflow.

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Taskfile

Contribute to Taskfile

Source Code

Taskfile source code is available from the following git hosting
providers:

	taskfile git repository [http://git.cyborginstitute.net/?p=taskfile.git]
(Cyborg Institute.)

	taskfile on Github [https://github.com/cyborginstitute/taskfile/]

Feel free to clone or fork at your leisure. Issue a pull request on
GitHub or send me an email/IM/IRC message if you want to send a patch,
or would like me to pull from another repository changes back into
“maineline.” Feel free to suggest changes to either the code or the
documentation.

Contrib

The contrib/ directory in the source tree is for enhancements and
extensions to Taskfile. While the core makefiles are (and should be)
basic and unadorned for easy use, customization, and compatibility,
all submissions to contrib/ are totally appropriate no matter how
specialized.

Bugs/Issues

Use the taskfile issue tracker [http://github.com/cyborginstitute/taskfile/issues]
(on GitHub) to browse current bugs/issues/questions, or open a new
issue [http://github.com/cyborginstitute/taskfile/issues/new].

Feel free to send me an email if you want to log an issue, but don’t
want to fuss with the bug tracker yourself (yet.)

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	
 previous |

 	Taskfile

Glossary

	aggregation

	The process of consolidating information or data from a wide
number of input sources into a single manageable output.

	flow

	In Taskfile operation, most source files are normal files that
contain content and notes, as well as potential actionable task
items. The flow file, is an exception, and operates as a scratch
space for ad hoc tasks and actionable items that don’t merit
their own file, or for situations when you need to capture a
large number of notes and tasks at once.

	future list

	A tasklist filtered from the primary $(OUTPUT)
according to the FUTURE_FILTER. Use to segregate
non-actionable tasks that are beyond the current horizon, or in
a dependent or frozen state.

	keyword

	A string that you can use to identify a task item in a plain
text file. Taskfile’s default configuration assumes
that keywords are strings of all-capital letters at the
beginning of a line.

	target

	In Make terminology a (build) target refers to the output
generated according to the process defined by the makefile.

	tasklist

	The output of the Taskfile build process. The
$(OUTPUT) generates this file in the default build.

	variable

	The values that configure the machine and environmental specific
operation of Taskfile. Full documentation is available in the
variables section of the internals reference.

	work list

	A tasklist filtered from the primary $(OUTPUT)
according to the WORK_FILTER (typically based on
filename.) Used to segregate non-actionable tasks or different
spheres of work from each other.

 Copyright 2012, Sam Kleinman.

 Navigation

 	
 index

 	Taskfile

Index

 Symbols
 | A
 | C
 | D
 | E
 | F
 | H
 | K
 | M
 | N
 | O
 | P
 | S
 | T
 | V
 | W

Symbols

 	

 	$(CACHE)/$(OUTPUT_FILENAME).list (make target)

 	$(CACHE)/%.$(OUTPUT_FILENAME) (make target)

 	$(CACHE)/.setup (make target)

 	$(FUTURE_OUTPUT) (make target)

 	

 	$(OUTPUT) (make target)

 	$(PROJECTS_OUTPUT) (make target)

 	$(SOURCE)/%.$(EXTENSION) (make dependency)

 	$(WORK_OUTPUT) (make target)

A

 	

 	aggregation

 	

 	all (make target)

C

 	

 	C-c d d (emacs keybinding)

 	C-c d n (emacs keybinding)

 	C-c d o (emacs keybinding)

 	C-c t c (emacs keybinding)

 	C-c t f (emacs keybinding)

 	C-c t t (emacs keybinding)

 	CACHE (make variable)

 	CACHE_DIRS (make variable)

 	

 	CACHE_INDEX_FILES (make variable)

 	clean (make target)

 	clean-all (make target)

 	clean-cache (make target)

 	clean-dirty (make target)

 	clean-output (make target)

 	clean-setup (make target)

 	CLEAN_UP_DELETED_FILES (make variable)

D

 	

 	deft-auto-save-interval (emacs variable)

 	deft-directory (emacs variable)

 	deft-extension (emacs variable)

 	

 	deft-file-make-slug (emacs function)

 	deft-text-mode (emacs variable)

E

 	

 	EXTENSION (make variable)

 	

 	EXTRA_OUTPUT_DIR (make variable), [1]

F

 	

 	flow

 	future list

 	FUTURE_FILTER (make variable)

 	

 	FUTURE_KEYWORDS (make variable)

 	FUTURE_OUTPUT (make variable)

H

 	

 	help (make target)

K

 	

 	keyword

 	keywords

 	

 	KEYWORDS (make variable)

M

 	

 	MAKEFLAGS (make variable)

N

 	

 	NAME (make variable)

O

 	

 	OUTPUT (make variable)

 	OUTPUT_DIR (make variable)

 	

 	OUTPUT_FILE_NAME (make variable)

P

 	

 	PROJECTS_MAKECONTEXT (make variable)

 	

 	PROJECTS_OUTPUT (make variable)

S

 	

 	setup (make target)

 	SOURCE (make variable)

 	

 	SOURCEDIR (make variable)

 	SOURCES (make variable)

T

 	

 	taksfile-flow-location (emacs variable)

 	target

 	taskfile-compile (emacs function)

 	taskfile-compile-command (emacs variable)

 	taskfile-flow (emacs function)

 	taskfile-location (emacs variable)

 	taskfile-mark-done (emacs function)

 	

 	taskfile-open (emacs function)

 	tasklist

 	TMPL_DIR (make variable)

 	todo (make target)

 	todo-future (make target)

 	todo-work (make target)

 	tychoish-deft-create (emacs function)

V

 	

 	variable

W

 	

 	work list

 	WORK_FILTER (make variable)

 	

 	WORK_OUTPUT (make variable)

 Copyright 2012, Sam Kleinman.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		Taskfile »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Sam Kleinman.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

